Step |
Hyp |
Ref |
Expression |
1 |
|
df-of |
⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
2 |
1
|
a1i |
⊢ ( 𝐹 ∈ V → ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
3 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
4 |
|
dmeq |
⊢ ( 𝑔 = ∅ → dom 𝑔 = dom ∅ ) |
5 |
3 4
|
ineqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = ∅ ) → ( dom 𝑓 ∩ dom 𝑔 ) = ( dom 𝐹 ∩ dom ∅ ) ) |
6 |
5
|
mpteq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = ∅ ) → ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom ∅ ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = ∅ ) ) → ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom ∅ ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
8 |
|
dm0 |
⊢ dom ∅ = ∅ |
9 |
8
|
ineq2i |
⊢ ( dom 𝐹 ∩ dom ∅ ) = ( dom 𝐹 ∩ ∅ ) |
10 |
|
in0 |
⊢ ( dom 𝐹 ∩ ∅ ) = ∅ |
11 |
9 10
|
eqtri |
⊢ ( dom 𝐹 ∩ dom ∅ ) = ∅ |
12 |
11
|
a1i |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = ∅ ) ) → ( dom 𝐹 ∩ dom ∅ ) = ∅ ) |
13 |
12
|
mpteq1d |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = ∅ ) ) → ( 𝑥 ∈ ( dom 𝐹 ∩ dom ∅ ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ∅ ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
14 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ∅ |
15 |
14
|
a1i |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = ∅ ) ) → ( 𝑥 ∈ ∅ ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ∅ ) |
16 |
7 13 15
|
3eqtrd |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = ∅ ) ) → ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ∅ ) |
17 |
|
id |
⊢ ( 𝐹 ∈ V → 𝐹 ∈ V ) |
18 |
|
0ex |
⊢ ∅ ∈ V |
19 |
18
|
a1i |
⊢ ( 𝐹 ∈ V → ∅ ∈ V ) |
20 |
2 16 17 19 19
|
ovmpod |
⊢ ( 𝐹 ∈ V → ( 𝐹 ∘f 𝑅 ∅ ) = ∅ ) |
21 |
1
|
reldmmpo |
⊢ Rel dom ∘f 𝑅 |
22 |
21
|
ovprc1 |
⊢ ( ¬ 𝐹 ∈ V → ( 𝐹 ∘f 𝑅 ∅ ) = ∅ ) |
23 |
20 22
|
pm2.61i |
⊢ ( 𝐹 ∘f 𝑅 ∅ ) = ∅ |