Metamath Proof Explorer


Theorem of0r

Description: Function operation with the empty function. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Assertion of0r
|- ( F oF R (/) ) = (/)

Proof

Step Hyp Ref Expression
1 df-of
 |-  oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) )
2 1 a1i
 |-  ( F e. _V -> oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) )
3 dmeq
 |-  ( f = F -> dom f = dom F )
4 dmeq
 |-  ( g = (/) -> dom g = dom (/) )
5 3 4 ineqan12d
 |-  ( ( f = F /\ g = (/) ) -> ( dom f i^i dom g ) = ( dom F i^i dom (/) ) )
6 5 mpteq1d
 |-  ( ( f = F /\ g = (/) ) -> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) = ( x e. ( dom F i^i dom (/) ) |-> ( ( f ` x ) R ( g ` x ) ) ) )
7 6 adantl
 |-  ( ( F e. _V /\ ( f = F /\ g = (/) ) ) -> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) = ( x e. ( dom F i^i dom (/) ) |-> ( ( f ` x ) R ( g ` x ) ) ) )
8 dm0
 |-  dom (/) = (/)
9 8 ineq2i
 |-  ( dom F i^i dom (/) ) = ( dom F i^i (/) )
10 in0
 |-  ( dom F i^i (/) ) = (/)
11 9 10 eqtri
 |-  ( dom F i^i dom (/) ) = (/)
12 11 a1i
 |-  ( ( F e. _V /\ ( f = F /\ g = (/) ) ) -> ( dom F i^i dom (/) ) = (/) )
13 12 mpteq1d
 |-  ( ( F e. _V /\ ( f = F /\ g = (/) ) ) -> ( x e. ( dom F i^i dom (/) ) |-> ( ( f ` x ) R ( g ` x ) ) ) = ( x e. (/) |-> ( ( f ` x ) R ( g ` x ) ) ) )
14 mpt0
 |-  ( x e. (/) |-> ( ( f ` x ) R ( g ` x ) ) ) = (/)
15 14 a1i
 |-  ( ( F e. _V /\ ( f = F /\ g = (/) ) ) -> ( x e. (/) |-> ( ( f ` x ) R ( g ` x ) ) ) = (/) )
16 7 13 15 3eqtrd
 |-  ( ( F e. _V /\ ( f = F /\ g = (/) ) ) -> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) = (/) )
17 id
 |-  ( F e. _V -> F e. _V )
18 0ex
 |-  (/) e. _V
19 18 a1i
 |-  ( F e. _V -> (/) e. _V )
20 2 16 17 19 19 ovmpod
 |-  ( F e. _V -> ( F oF R (/) ) = (/) )
21 1 reldmmpo
 |-  Rel dom oF R
22 21 ovprc1
 |-  ( -. F e. _V -> ( F oF R (/) ) = (/) )
23 20 22 pm2.61i
 |-  ( F oF R (/) ) = (/)