| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitprodclb.1 |
|
| 2 |
|
unitprodclb.u |
|
| 3 |
|
unitprodclb.m |
|
| 4 |
|
unitprodclb.r |
|
| 5 |
|
unitprodclb.f |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
|
rneq |
|
| 9 |
8
|
sseq1d |
|
| 10 |
7 9
|
bibi12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
eleq1d |
|
| 14 |
|
rneq |
|
| 15 |
14
|
sseq1d |
|
| 16 |
13 15
|
bibi12d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
eleq1d |
|
| 20 |
|
rneq |
|
| 21 |
20
|
sseq1d |
|
| 22 |
19 21
|
bibi12d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
|
rneq |
|
| 27 |
26
|
sseq1d |
|
| 28 |
25 27
|
bibi12d |
|
| 29 |
28
|
imbi2d |
|
| 30 |
|
eqid |
|
| 31 |
3 30
|
ringidval |
|
| 32 |
31
|
gsum0 |
|
| 33 |
|
crngring |
|
| 34 |
2 30
|
1unit |
|
| 35 |
33 34
|
syl |
|
| 36 |
32 35
|
eqeltrid |
|
| 37 |
|
rn0 |
|
| 38 |
|
0ss |
|
| 39 |
37 38
|
eqsstri |
|
| 40 |
39
|
a1i |
|
| 41 |
36 40
|
2thd |
|
| 42 |
|
simplr |
|
| 43 |
3 1
|
mgpbas |
|
| 44 |
3
|
crngmgp |
|
| 45 |
44
|
ad2antlr |
|
| 46 |
|
ovexd |
|
| 47 |
|
wrdf |
|
| 48 |
47
|
ad3antrrr |
|
| 49 |
|
fvexd |
|
| 50 |
|
simplll |
|
| 51 |
49 50
|
wrdfsupp |
|
| 52 |
43 31 45 46 48 51
|
gsumcl |
|
| 53 |
|
simpllr |
|
| 54 |
|
eqid |
|
| 55 |
2 54 1
|
unitmulclb |
|
| 56 |
42 52 53 55
|
syl3anc |
|
| 57 |
|
simpr |
|
| 58 |
|
vex |
|
| 59 |
58
|
snss |
|
| 60 |
|
s1rn |
|
| 61 |
60
|
sseq1d |
|
| 62 |
59 61
|
bitr4id |
|
| 63 |
53 62
|
syl |
|
| 64 |
57 63
|
anbi12d |
|
| 65 |
|
unss |
|
| 66 |
64 65
|
bitrdi |
|
| 67 |
56 66
|
bitrd |
|
| 68 |
3
|
ringmgp |
|
| 69 |
33 68
|
syl |
|
| 70 |
69
|
ad2antlr |
|
| 71 |
3 54
|
mgpplusg |
|
| 72 |
43 71
|
gsumccatsn |
|
| 73 |
70 50 53 72
|
syl3anc |
|
| 74 |
73
|
eleq1d |
|
| 75 |
53
|
s1cld |
|
| 76 |
|
ccatrn |
|
| 77 |
50 75 76
|
syl2anc |
|
| 78 |
77
|
sseq1d |
|
| 79 |
67 74 78
|
3bitr4d |
|
| 80 |
79
|
exp31 |
|
| 81 |
80
|
a2d |
|
| 82 |
11 17 23 29 41 81
|
wrdind |
|
| 83 |
5 4 82
|
sylc |
|