Metamath Proof Explorer


Theorem unitprodclb

Description: A finite product is a unit iff all factors are units. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses unitprodclb.1 B = Base R
unitprodclb.u U = Unit R
unitprodclb.m M = mulGrp R
unitprodclb.r φ R CRing
unitprodclb.f φ F Word B
Assertion unitprodclb φ M F U ran F U

Proof

Step Hyp Ref Expression
1 unitprodclb.1 B = Base R
2 unitprodclb.u U = Unit R
3 unitprodclb.m M = mulGrp R
4 unitprodclb.r φ R CRing
5 unitprodclb.f φ F Word B
6 oveq2 g = M g = M
7 6 eleq1d g = M g U M U
8 rneq g = ran g = ran
9 8 sseq1d g = ran g U ran U
10 7 9 bibi12d g = M g U ran g U M U ran U
11 10 imbi2d g = R CRing M g U ran g U R CRing M U ran U
12 oveq2 g = f M g = M f
13 12 eleq1d g = f M g U M f U
14 rneq g = f ran g = ran f
15 14 sseq1d g = f ran g U ran f U
16 13 15 bibi12d g = f M g U ran g U M f U ran f U
17 16 imbi2d g = f R CRing M g U ran g U R CRing M f U ran f U
18 oveq2 g = f ++ ⟨“ x ”⟩ M g = M f ++ ⟨“ x ”⟩
19 18 eleq1d g = f ++ ⟨“ x ”⟩ M g U M f ++ ⟨“ x ”⟩ U
20 rneq g = f ++ ⟨“ x ”⟩ ran g = ran f ++ ⟨“ x ”⟩
21 20 sseq1d g = f ++ ⟨“ x ”⟩ ran g U ran f ++ ⟨“ x ”⟩ U
22 19 21 bibi12d g = f ++ ⟨“ x ”⟩ M g U ran g U M f ++ ⟨“ x ”⟩ U ran f ++ ⟨“ x ”⟩ U
23 22 imbi2d g = f ++ ⟨“ x ”⟩ R CRing M g U ran g U R CRing M f ++ ⟨“ x ”⟩ U ran f ++ ⟨“ x ”⟩ U
24 oveq2 g = F M g = M F
25 24 eleq1d g = F M g U M F U
26 rneq g = F ran g = ran F
27 26 sseq1d g = F ran g U ran F U
28 25 27 bibi12d g = F M g U ran g U M F U ran F U
29 28 imbi2d g = F R CRing M g U ran g U R CRing M F U ran F U
30 eqid 1 R = 1 R
31 3 30 ringidval 1 R = 0 M
32 31 gsum0 M = 1 R
33 crngring R CRing R Ring
34 2 30 1unit R Ring 1 R U
35 33 34 syl R CRing 1 R U
36 32 35 eqeltrid R CRing M U
37 rn0 ran =
38 0ss U
39 37 38 eqsstri ran U
40 39 a1i R CRing ran U
41 36 40 2thd R CRing M U ran U
42 simplr f Word B x B R CRing M f U ran f U R CRing
43 3 1 mgpbas B = Base M
44 3 crngmgp R CRing M CMnd
45 44 ad2antlr f Word B x B R CRing M f U ran f U M CMnd
46 ovexd f Word B x B R CRing M f U ran f U 0 ..^ f V
47 wrdf f Word B f : 0 ..^ f B
48 47 ad3antrrr f Word B x B R CRing M f U ran f U f : 0 ..^ f B
49 fvexd f Word B x B R CRing M f U ran f U 1 R V
50 simplll f Word B x B R CRing M f U ran f U f Word B
51 49 50 wrdfsupp f Word B x B R CRing M f U ran f U finSupp 1 R f
52 43 31 45 46 48 51 gsumcl f Word B x B R CRing M f U ran f U M f B
53 simpllr f Word B x B R CRing M f U ran f U x B
54 eqid R = R
55 2 54 1 unitmulclb R CRing M f B x B M f R x U M f U x U
56 42 52 53 55 syl3anc f Word B x B R CRing M f U ran f U M f R x U M f U x U
57 simpr f Word B x B R CRing M f U ran f U M f U ran f U
58 vex x V
59 58 snss x U x U
60 s1rn x B ran ⟨“ x ”⟩ = x
61 60 sseq1d x B ran ⟨“ x ”⟩ U x U
62 59 61 bitr4id x B x U ran ⟨“ x ”⟩ U
63 53 62 syl f Word B x B R CRing M f U ran f U x U ran ⟨“ x ”⟩ U
64 57 63 anbi12d f Word B x B R CRing M f U ran f U M f U x U ran f U ran ⟨“ x ”⟩ U
65 unss ran f U ran ⟨“ x ”⟩ U ran f ran ⟨“ x ”⟩ U
66 64 65 bitrdi f Word B x B R CRing M f U ran f U M f U x U ran f ran ⟨“ x ”⟩ U
67 56 66 bitrd f Word B x B R CRing M f U ran f U M f R x U ran f ran ⟨“ x ”⟩ U
68 3 ringmgp R Ring M Mnd
69 33 68 syl R CRing M Mnd
70 69 ad2antlr f Word B x B R CRing M f U ran f U M Mnd
71 3 54 mgpplusg R = + M
72 43 71 gsumccatsn M Mnd f Word B x B M f ++ ⟨“ x ”⟩ = M f R x
73 70 50 53 72 syl3anc f Word B x B R CRing M f U ran f U M f ++ ⟨“ x ”⟩ = M f R x
74 73 eleq1d f Word B x B R CRing M f U ran f U M f ++ ⟨“ x ”⟩ U M f R x U
75 53 s1cld f Word B x B R CRing M f U ran f U ⟨“ x ”⟩ Word B
76 ccatrn f Word B ⟨“ x ”⟩ Word B ran f ++ ⟨“ x ”⟩ = ran f ran ⟨“ x ”⟩
77 50 75 76 syl2anc f Word B x B R CRing M f U ran f U ran f ++ ⟨“ x ”⟩ = ran f ran ⟨“ x ”⟩
78 77 sseq1d f Word B x B R CRing M f U ran f U ran f ++ ⟨“ x ”⟩ U ran f ran ⟨“ x ”⟩ U
79 67 74 78 3bitr4d f Word B x B R CRing M f U ran f U M f ++ ⟨“ x ”⟩ U ran f ++ ⟨“ x ”⟩ U
80 79 exp31 f Word B x B R CRing M f U ran f U M f ++ ⟨“ x ”⟩ U ran f ++ ⟨“ x ”⟩ U
81 80 a2d f Word B x B R CRing M f U ran f U R CRing M f ++ ⟨“ x ”⟩ U ran f ++ ⟨“ x ”⟩ U
82 11 17 23 29 41 81 wrdind F Word B R CRing M F U ran F U
83 5 4 82 sylc φ M F U ran F U