Step |
Hyp |
Ref |
Expression |
1 |
|
unitprodclb.1 |
|
2 |
|
unitprodclb.u |
|
3 |
|
unitprodclb.m |
|
4 |
|
unitprodclb.r |
|
5 |
|
unitprodclb.f |
|
6 |
|
oveq2 |
|
7 |
6
|
eleq1d |
|
8 |
|
rneq |
|
9 |
8
|
sseq1d |
|
10 |
7 9
|
bibi12d |
|
11 |
10
|
imbi2d |
|
12 |
|
oveq2 |
|
13 |
12
|
eleq1d |
|
14 |
|
rneq |
|
15 |
14
|
sseq1d |
|
16 |
13 15
|
bibi12d |
|
17 |
16
|
imbi2d |
|
18 |
|
oveq2 |
|
19 |
18
|
eleq1d |
|
20 |
|
rneq |
|
21 |
20
|
sseq1d |
|
22 |
19 21
|
bibi12d |
|
23 |
22
|
imbi2d |
|
24 |
|
oveq2 |
|
25 |
24
|
eleq1d |
|
26 |
|
rneq |
|
27 |
26
|
sseq1d |
|
28 |
25 27
|
bibi12d |
|
29 |
28
|
imbi2d |
|
30 |
|
eqid |
|
31 |
3 30
|
ringidval |
|
32 |
31
|
gsum0 |
|
33 |
|
crngring |
|
34 |
2 30
|
1unit |
|
35 |
33 34
|
syl |
|
36 |
32 35
|
eqeltrid |
|
37 |
|
rn0 |
|
38 |
|
0ss |
|
39 |
37 38
|
eqsstri |
|
40 |
39
|
a1i |
|
41 |
36 40
|
2thd |
|
42 |
|
simplr |
|
43 |
3 1
|
mgpbas |
|
44 |
3
|
crngmgp |
|
45 |
44
|
ad2antlr |
|
46 |
|
ovexd |
|
47 |
|
wrdf |
|
48 |
47
|
ad3antrrr |
|
49 |
|
fvexd |
|
50 |
|
simplll |
|
51 |
49 50
|
wrdfsupp |
|
52 |
43 31 45 46 48 51
|
gsumcl |
|
53 |
|
simpllr |
|
54 |
|
eqid |
|
55 |
2 54 1
|
unitmulclb |
|
56 |
42 52 53 55
|
syl3anc |
|
57 |
|
simpr |
|
58 |
|
vex |
|
59 |
58
|
snss |
|
60 |
|
s1rn |
|
61 |
60
|
sseq1d |
|
62 |
59 61
|
bitr4id |
|
63 |
53 62
|
syl |
|
64 |
57 63
|
anbi12d |
|
65 |
|
unss |
|
66 |
64 65
|
bitrdi |
|
67 |
56 66
|
bitrd |
|
68 |
3
|
ringmgp |
|
69 |
33 68
|
syl |
|
70 |
69
|
ad2antlr |
|
71 |
3 54
|
mgpplusg |
|
72 |
43 71
|
gsumccatsn |
|
73 |
70 50 53 72
|
syl3anc |
|
74 |
73
|
eleq1d |
|
75 |
53
|
s1cld |
|
76 |
|
ccatrn |
|
77 |
50 75 76
|
syl2anc |
|
78 |
77
|
sseq1d |
|
79 |
67 74 78
|
3bitr4d |
|
80 |
79
|
exp31 |
|
81 |
80
|
a2d |
|
82 |
11 17 23 29 41 81
|
wrdind |
|
83 |
5 4 82
|
sylc |
|