| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitprodclb.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
unitprodclb.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
unitprodclb.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 4 |
|
unitprodclb.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
unitprodclb.f |
⊢ ( 𝜑 → 𝐹 ∈ Word 𝐵 ) |
| 6 |
|
oveq2 |
⊢ ( 𝑔 = ∅ → ( 𝑀 Σg 𝑔 ) = ( 𝑀 Σg ∅ ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑔 = ∅ → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ( 𝑀 Σg ∅ ) ∈ 𝑈 ) ) |
| 8 |
|
rneq |
⊢ ( 𝑔 = ∅ → ran 𝑔 = ran ∅ ) |
| 9 |
8
|
sseq1d |
⊢ ( 𝑔 = ∅ → ( ran 𝑔 ⊆ 𝑈 ↔ ran ∅ ⊆ 𝑈 ) ) |
| 10 |
7 9
|
bibi12d |
⊢ ( 𝑔 = ∅ → ( ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ↔ ( ( 𝑀 Σg ∅ ) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈 ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑔 = ∅ → ( ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ) ↔ ( 𝑅 ∈ CRing → ( ( 𝑀 Σg ∅ ) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈 ) ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑔 = 𝑓 → ( 𝑀 Σg 𝑔 ) = ( 𝑀 Σg 𝑓 ) ) |
| 13 |
12
|
eleq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 14 |
|
rneq |
⊢ ( 𝑔 = 𝑓 → ran 𝑔 = ran 𝑓 ) |
| 15 |
14
|
sseq1d |
⊢ ( 𝑔 = 𝑓 → ( ran 𝑔 ⊆ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) |
| 16 |
13 15
|
bibi12d |
⊢ ( 𝑔 = 𝑓 → ( ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ↔ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ) ↔ ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑓 ++ 〈“ 𝑥 ”〉 ) → ( 𝑀 Σg 𝑔 ) = ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑔 = ( 𝑓 ++ 〈“ 𝑥 ”〉 ) → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ∈ 𝑈 ) ) |
| 20 |
|
rneq |
⊢ ( 𝑔 = ( 𝑓 ++ 〈“ 𝑥 ”〉 ) → ran 𝑔 = ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) |
| 21 |
20
|
sseq1d |
⊢ ( 𝑔 = ( 𝑓 ++ 〈“ 𝑥 ”〉 ) → ( ran 𝑔 ⊆ 𝑈 ↔ ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) |
| 22 |
19 21
|
bibi12d |
⊢ ( 𝑔 = ( 𝑓 ++ 〈“ 𝑥 ”〉 ) → ( ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ↔ ( ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ∈ 𝑈 ↔ ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑔 = ( 𝑓 ++ 〈“ 𝑥 ”〉 ) → ( ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ) ↔ ( 𝑅 ∈ CRing → ( ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ∈ 𝑈 ↔ ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑔 = 𝐹 → ( 𝑀 Σg 𝑔 ) = ( 𝑀 Σg 𝐹 ) ) |
| 25 |
24
|
eleq1d |
⊢ ( 𝑔 = 𝐹 → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ( 𝑀 Σg 𝐹 ) ∈ 𝑈 ) ) |
| 26 |
|
rneq |
⊢ ( 𝑔 = 𝐹 → ran 𝑔 = ran 𝐹 ) |
| 27 |
26
|
sseq1d |
⊢ ( 𝑔 = 𝐹 → ( ran 𝑔 ⊆ 𝑈 ↔ ran 𝐹 ⊆ 𝑈 ) ) |
| 28 |
25 27
|
bibi12d |
⊢ ( 𝑔 = 𝐹 → ( ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ↔ ( ( 𝑀 Σg 𝐹 ) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈 ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑔 = 𝐹 → ( ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝑔 ) ∈ 𝑈 ↔ ran 𝑔 ⊆ 𝑈 ) ) ↔ ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝐹 ) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈 ) ) ) ) |
| 30 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 31 |
3 30
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 32 |
31
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 1r ‘ 𝑅 ) |
| 33 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 34 |
2 30
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 35 |
33 34
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 36 |
32 35
|
eqeltrid |
⊢ ( 𝑅 ∈ CRing → ( 𝑀 Σg ∅ ) ∈ 𝑈 ) |
| 37 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 38 |
|
0ss |
⊢ ∅ ⊆ 𝑈 |
| 39 |
37 38
|
eqsstri |
⊢ ran ∅ ⊆ 𝑈 |
| 40 |
39
|
a1i |
⊢ ( 𝑅 ∈ CRing → ran ∅ ⊆ 𝑈 ) |
| 41 |
36 40
|
2thd |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑀 Σg ∅ ) ∈ 𝑈 ↔ ran ∅ ⊆ 𝑈 ) ) |
| 42 |
|
simplr |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 𝑅 ∈ CRing ) |
| 43 |
3 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 44 |
3
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd ) |
| 45 |
44
|
ad2antlr |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 𝑀 ∈ CMnd ) |
| 46 |
|
ovexd |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ∈ V ) |
| 47 |
|
wrdf |
⊢ ( 𝑓 ∈ Word 𝐵 → 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ⟶ 𝐵 ) |
| 48 |
47
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 𝑓 : ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ⟶ 𝐵 ) |
| 49 |
|
fvexd |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( 1r ‘ 𝑅 ) ∈ V ) |
| 50 |
|
simplll |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 𝑓 ∈ Word 𝐵 ) |
| 51 |
49 50
|
wrdfsupp |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 𝑓 finSupp ( 1r ‘ 𝑅 ) ) |
| 52 |
43 31 45 46 48 51
|
gsumcl |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( 𝑀 Σg 𝑓 ) ∈ 𝐵 ) |
| 53 |
|
simpllr |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 𝑥 ∈ 𝐵 ) |
| 54 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 55 |
2 54 1
|
unitmulclb |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑀 Σg 𝑓 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑀 Σg 𝑓 ) ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝑈 ↔ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ) ) |
| 56 |
42 52 53 55
|
syl3anc |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ( ( 𝑀 Σg 𝑓 ) ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝑈 ↔ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ) ) |
| 57 |
|
simpr |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) |
| 58 |
|
vex |
⊢ 𝑥 ∈ V |
| 59 |
58
|
snss |
⊢ ( 𝑥 ∈ 𝑈 ↔ { 𝑥 } ⊆ 𝑈 ) |
| 60 |
|
s1rn |
⊢ ( 𝑥 ∈ 𝐵 → ran 〈“ 𝑥 ”〉 = { 𝑥 } ) |
| 61 |
60
|
sseq1d |
⊢ ( 𝑥 ∈ 𝐵 → ( ran 〈“ 𝑥 ”〉 ⊆ 𝑈 ↔ { 𝑥 } ⊆ 𝑈 ) ) |
| 62 |
59 61
|
bitr4id |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑈 ↔ ran 〈“ 𝑥 ”〉 ⊆ 𝑈 ) ) |
| 63 |
53 62
|
syl |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( 𝑥 ∈ 𝑈 ↔ ran 〈“ 𝑥 ”〉 ⊆ 𝑈 ) ) |
| 64 |
57 63
|
anbi12d |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ↔ ( ran 𝑓 ⊆ 𝑈 ∧ ran 〈“ 𝑥 ”〉 ⊆ 𝑈 ) ) ) |
| 65 |
|
unss |
⊢ ( ( ran 𝑓 ⊆ 𝑈 ∧ ran 〈“ 𝑥 ”〉 ⊆ 𝑈 ) ↔ ( ran 𝑓 ∪ ran 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) |
| 66 |
64 65
|
bitrdi |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ↔ ( ran 𝑓 ∪ ran 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) |
| 67 |
56 66
|
bitrd |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ( ( 𝑀 Σg 𝑓 ) ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝑈 ↔ ( ran 𝑓 ∪ ran 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) |
| 68 |
3
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 69 |
33 68
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑀 ∈ Mnd ) |
| 70 |
69
|
ad2antlr |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 𝑀 ∈ Mnd ) |
| 71 |
3 54
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 72 |
43 71
|
gsumccatsn |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) = ( ( 𝑀 Σg 𝑓 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 73 |
70 50 53 72
|
syl3anc |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) = ( ( 𝑀 Σg 𝑓 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 74 |
73
|
eleq1d |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ∈ 𝑈 ↔ ( ( 𝑀 Σg 𝑓 ) ( .r ‘ 𝑅 ) 𝑥 ) ∈ 𝑈 ) ) |
| 75 |
53
|
s1cld |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → 〈“ 𝑥 ”〉 ∈ Word 𝐵 ) |
| 76 |
|
ccatrn |
⊢ ( ( 𝑓 ∈ Word 𝐵 ∧ 〈“ 𝑥 ”〉 ∈ Word 𝐵 ) → ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) = ( ran 𝑓 ∪ ran 〈“ 𝑥 ”〉 ) ) |
| 77 |
50 75 76
|
syl2anc |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) = ( ran 𝑓 ∪ ran 〈“ 𝑥 ”〉 ) ) |
| 78 |
77
|
sseq1d |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ↔ ( ran 𝑓 ∪ ran 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) |
| 79 |
67 74 78
|
3bitr4d |
⊢ ( ( ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ∈ 𝑈 ↔ ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) |
| 80 |
79
|
exp31 |
⊢ ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑅 ∈ CRing → ( ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) → ( ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ∈ 𝑈 ↔ ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) ) ) |
| 81 |
80
|
a2d |
⊢ ( ( 𝑓 ∈ Word 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝑓 ) ∈ 𝑈 ↔ ran 𝑓 ⊆ 𝑈 ) ) → ( 𝑅 ∈ CRing → ( ( 𝑀 Σg ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ) ∈ 𝑈 ↔ ran ( 𝑓 ++ 〈“ 𝑥 ”〉 ) ⊆ 𝑈 ) ) ) ) |
| 82 |
11 17 23 29 41 81
|
wrdind |
⊢ ( 𝐹 ∈ Word 𝐵 → ( 𝑅 ∈ CRing → ( ( 𝑀 Σg 𝐹 ) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈 ) ) ) |
| 83 |
5 4 82
|
sylc |
⊢ ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) ∈ 𝑈 ↔ ran 𝐹 ⊆ 𝑈 ) ) |