Step |
Hyp |
Ref |
Expression |
1 |
|
unitprodclb.1 |
|- B = ( Base ` R ) |
2 |
|
unitprodclb.u |
|- U = ( Unit ` R ) |
3 |
|
unitprodclb.m |
|- M = ( mulGrp ` R ) |
4 |
|
unitprodclb.r |
|- ( ph -> R e. CRing ) |
5 |
|
unitprodclb.f |
|- ( ph -> F e. Word B ) |
6 |
|
oveq2 |
|- ( g = (/) -> ( M gsum g ) = ( M gsum (/) ) ) |
7 |
6
|
eleq1d |
|- ( g = (/) -> ( ( M gsum g ) e. U <-> ( M gsum (/) ) e. U ) ) |
8 |
|
rneq |
|- ( g = (/) -> ran g = ran (/) ) |
9 |
8
|
sseq1d |
|- ( g = (/) -> ( ran g C_ U <-> ran (/) C_ U ) ) |
10 |
7 9
|
bibi12d |
|- ( g = (/) -> ( ( ( M gsum g ) e. U <-> ran g C_ U ) <-> ( ( M gsum (/) ) e. U <-> ran (/) C_ U ) ) ) |
11 |
10
|
imbi2d |
|- ( g = (/) -> ( ( R e. CRing -> ( ( M gsum g ) e. U <-> ran g C_ U ) ) <-> ( R e. CRing -> ( ( M gsum (/) ) e. U <-> ran (/) C_ U ) ) ) ) |
12 |
|
oveq2 |
|- ( g = f -> ( M gsum g ) = ( M gsum f ) ) |
13 |
12
|
eleq1d |
|- ( g = f -> ( ( M gsum g ) e. U <-> ( M gsum f ) e. U ) ) |
14 |
|
rneq |
|- ( g = f -> ran g = ran f ) |
15 |
14
|
sseq1d |
|- ( g = f -> ( ran g C_ U <-> ran f C_ U ) ) |
16 |
13 15
|
bibi12d |
|- ( g = f -> ( ( ( M gsum g ) e. U <-> ran g C_ U ) <-> ( ( M gsum f ) e. U <-> ran f C_ U ) ) ) |
17 |
16
|
imbi2d |
|- ( g = f -> ( ( R e. CRing -> ( ( M gsum g ) e. U <-> ran g C_ U ) ) <-> ( R e. CRing -> ( ( M gsum f ) e. U <-> ran f C_ U ) ) ) ) |
18 |
|
oveq2 |
|- ( g = ( f ++ <" x "> ) -> ( M gsum g ) = ( M gsum ( f ++ <" x "> ) ) ) |
19 |
18
|
eleq1d |
|- ( g = ( f ++ <" x "> ) -> ( ( M gsum g ) e. U <-> ( M gsum ( f ++ <" x "> ) ) e. U ) ) |
20 |
|
rneq |
|- ( g = ( f ++ <" x "> ) -> ran g = ran ( f ++ <" x "> ) ) |
21 |
20
|
sseq1d |
|- ( g = ( f ++ <" x "> ) -> ( ran g C_ U <-> ran ( f ++ <" x "> ) C_ U ) ) |
22 |
19 21
|
bibi12d |
|- ( g = ( f ++ <" x "> ) -> ( ( ( M gsum g ) e. U <-> ran g C_ U ) <-> ( ( M gsum ( f ++ <" x "> ) ) e. U <-> ran ( f ++ <" x "> ) C_ U ) ) ) |
23 |
22
|
imbi2d |
|- ( g = ( f ++ <" x "> ) -> ( ( R e. CRing -> ( ( M gsum g ) e. U <-> ran g C_ U ) ) <-> ( R e. CRing -> ( ( M gsum ( f ++ <" x "> ) ) e. U <-> ran ( f ++ <" x "> ) C_ U ) ) ) ) |
24 |
|
oveq2 |
|- ( g = F -> ( M gsum g ) = ( M gsum F ) ) |
25 |
24
|
eleq1d |
|- ( g = F -> ( ( M gsum g ) e. U <-> ( M gsum F ) e. U ) ) |
26 |
|
rneq |
|- ( g = F -> ran g = ran F ) |
27 |
26
|
sseq1d |
|- ( g = F -> ( ran g C_ U <-> ran F C_ U ) ) |
28 |
25 27
|
bibi12d |
|- ( g = F -> ( ( ( M gsum g ) e. U <-> ran g C_ U ) <-> ( ( M gsum F ) e. U <-> ran F C_ U ) ) ) |
29 |
28
|
imbi2d |
|- ( g = F -> ( ( R e. CRing -> ( ( M gsum g ) e. U <-> ran g C_ U ) ) <-> ( R e. CRing -> ( ( M gsum F ) e. U <-> ran F C_ U ) ) ) ) |
30 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
31 |
3 30
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
32 |
31
|
gsum0 |
|- ( M gsum (/) ) = ( 1r ` R ) |
33 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
34 |
2 30
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. U ) |
35 |
33 34
|
syl |
|- ( R e. CRing -> ( 1r ` R ) e. U ) |
36 |
32 35
|
eqeltrid |
|- ( R e. CRing -> ( M gsum (/) ) e. U ) |
37 |
|
rn0 |
|- ran (/) = (/) |
38 |
|
0ss |
|- (/) C_ U |
39 |
37 38
|
eqsstri |
|- ran (/) C_ U |
40 |
39
|
a1i |
|- ( R e. CRing -> ran (/) C_ U ) |
41 |
36 40
|
2thd |
|- ( R e. CRing -> ( ( M gsum (/) ) e. U <-> ran (/) C_ U ) ) |
42 |
|
simplr |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> R e. CRing ) |
43 |
3 1
|
mgpbas |
|- B = ( Base ` M ) |
44 |
3
|
crngmgp |
|- ( R e. CRing -> M e. CMnd ) |
45 |
44
|
ad2antlr |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> M e. CMnd ) |
46 |
|
ovexd |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( 0 ..^ ( # ` f ) ) e. _V ) |
47 |
|
wrdf |
|- ( f e. Word B -> f : ( 0 ..^ ( # ` f ) ) --> B ) |
48 |
47
|
ad3antrrr |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> f : ( 0 ..^ ( # ` f ) ) --> B ) |
49 |
|
fvexd |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( 1r ` R ) e. _V ) |
50 |
|
simplll |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> f e. Word B ) |
51 |
49 50
|
wrdfsupp |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> f finSupp ( 1r ` R ) ) |
52 |
43 31 45 46 48 51
|
gsumcl |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( M gsum f ) e. B ) |
53 |
|
simpllr |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> x e. B ) |
54 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
55 |
2 54 1
|
unitmulclb |
|- ( ( R e. CRing /\ ( M gsum f ) e. B /\ x e. B ) -> ( ( ( M gsum f ) ( .r ` R ) x ) e. U <-> ( ( M gsum f ) e. U /\ x e. U ) ) ) |
56 |
42 52 53 55
|
syl3anc |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ( ( M gsum f ) ( .r ` R ) x ) e. U <-> ( ( M gsum f ) e. U /\ x e. U ) ) ) |
57 |
|
simpr |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ( M gsum f ) e. U <-> ran f C_ U ) ) |
58 |
|
vex |
|- x e. _V |
59 |
58
|
snss |
|- ( x e. U <-> { x } C_ U ) |
60 |
|
s1rn |
|- ( x e. B -> ran <" x "> = { x } ) |
61 |
60
|
sseq1d |
|- ( x e. B -> ( ran <" x "> C_ U <-> { x } C_ U ) ) |
62 |
59 61
|
bitr4id |
|- ( x e. B -> ( x e. U <-> ran <" x "> C_ U ) ) |
63 |
53 62
|
syl |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( x e. U <-> ran <" x "> C_ U ) ) |
64 |
57 63
|
anbi12d |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ( ( M gsum f ) e. U /\ x e. U ) <-> ( ran f C_ U /\ ran <" x "> C_ U ) ) ) |
65 |
|
unss |
|- ( ( ran f C_ U /\ ran <" x "> C_ U ) <-> ( ran f u. ran <" x "> ) C_ U ) |
66 |
64 65
|
bitrdi |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ( ( M gsum f ) e. U /\ x e. U ) <-> ( ran f u. ran <" x "> ) C_ U ) ) |
67 |
56 66
|
bitrd |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ( ( M gsum f ) ( .r ` R ) x ) e. U <-> ( ran f u. ran <" x "> ) C_ U ) ) |
68 |
3
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
69 |
33 68
|
syl |
|- ( R e. CRing -> M e. Mnd ) |
70 |
69
|
ad2antlr |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> M e. Mnd ) |
71 |
3 54
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
72 |
43 71
|
gsumccatsn |
|- ( ( M e. Mnd /\ f e. Word B /\ x e. B ) -> ( M gsum ( f ++ <" x "> ) ) = ( ( M gsum f ) ( .r ` R ) x ) ) |
73 |
70 50 53 72
|
syl3anc |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( M gsum ( f ++ <" x "> ) ) = ( ( M gsum f ) ( .r ` R ) x ) ) |
74 |
73
|
eleq1d |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ( M gsum ( f ++ <" x "> ) ) e. U <-> ( ( M gsum f ) ( .r ` R ) x ) e. U ) ) |
75 |
53
|
s1cld |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> <" x "> e. Word B ) |
76 |
|
ccatrn |
|- ( ( f e. Word B /\ <" x "> e. Word B ) -> ran ( f ++ <" x "> ) = ( ran f u. ran <" x "> ) ) |
77 |
50 75 76
|
syl2anc |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ran ( f ++ <" x "> ) = ( ran f u. ran <" x "> ) ) |
78 |
77
|
sseq1d |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ran ( f ++ <" x "> ) C_ U <-> ( ran f u. ran <" x "> ) C_ U ) ) |
79 |
67 74 78
|
3bitr4d |
|- ( ( ( ( f e. Word B /\ x e. B ) /\ R e. CRing ) /\ ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( ( M gsum ( f ++ <" x "> ) ) e. U <-> ran ( f ++ <" x "> ) C_ U ) ) |
80 |
79
|
exp31 |
|- ( ( f e. Word B /\ x e. B ) -> ( R e. CRing -> ( ( ( M gsum f ) e. U <-> ran f C_ U ) -> ( ( M gsum ( f ++ <" x "> ) ) e. U <-> ran ( f ++ <" x "> ) C_ U ) ) ) ) |
81 |
80
|
a2d |
|- ( ( f e. Word B /\ x e. B ) -> ( ( R e. CRing -> ( ( M gsum f ) e. U <-> ran f C_ U ) ) -> ( R e. CRing -> ( ( M gsum ( f ++ <" x "> ) ) e. U <-> ran ( f ++ <" x "> ) C_ U ) ) ) ) |
82 |
11 17 23 29 41 81
|
wrdind |
|- ( F e. Word B -> ( R e. CRing -> ( ( M gsum F ) e. U <-> ran F C_ U ) ) ) |
83 |
5 4 82
|
sylc |
|- ( ph -> ( ( M gsum F ) e. U <-> ran F C_ U ) ) |