| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzo0opth.1 |
|
| 2 |
|
fzo0opth.2 |
|
| 3 |
|
0z |
|
| 4 |
1
|
nn0zd |
|
| 5 |
|
simpr |
|
| 6 |
|
fzoopth |
|
| 7 |
3 4 5 6
|
mp3an2ani |
|
| 8 |
|
eqid |
|
| 9 |
8
|
biantrur |
|
| 10 |
7 9
|
bitr4di |
|
| 11 |
|
simpr |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
fzo0 |
|
| 14 |
12 13
|
eqtr3di |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
|
eqcom |
|
| 17 |
15 16
|
bitrdi |
|
| 18 |
|
0zd |
|
| 19 |
2
|
nn0zd |
|
| 20 |
19
|
adantr |
|
| 21 |
|
fzon |
|
| 22 |
18 20 21
|
syl2anc |
|
| 23 |
|
nn0le0eq0 |
|
| 24 |
23
|
biimpa |
|
| 25 |
2 24
|
sylan |
|
| 26 |
25
|
adantlr |
|
| 27 |
|
id |
|
| 28 |
|
0le0 |
|
| 29 |
27 28
|
eqbrtrdi |
|
| 30 |
29
|
adantl |
|
| 31 |
26 30
|
impbida |
|
| 32 |
|
eqcom |
|
| 33 |
32
|
a1i |
|
| 34 |
11
|
eqeq1d |
|
| 35 |
31 33 34
|
3bitrd |
|
| 36 |
17 22 35
|
3bitr2d |
|
| 37 |
1
|
nn0ge0d |
|
| 38 |
|
0red |
|
| 39 |
1
|
nn0red |
|
| 40 |
38 39
|
leloed |
|
| 41 |
37 40
|
mpbid |
|
| 42 |
10 36 41
|
mpjaodan |
|