| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
fzolb |
|
| 3 |
1 2
|
sylibr |
|
| 4 |
|
simpr |
|
| 5 |
3 4
|
eleqtrd |
|
| 6 |
|
elfzouz |
|
| 7 |
|
uzss |
|
| 8 |
5 6 7
|
3syl |
|
| 9 |
2
|
biimpri |
|
| 10 |
9
|
adantr |
|
| 11 |
|
eleq2 |
|
| 12 |
11
|
adantl |
|
| 13 |
10 12
|
mpbid |
|
| 14 |
|
elfzolt3b |
|
| 15 |
13 14
|
syl |
|
| 16 |
15 4
|
eleqtrrd |
|
| 17 |
|
elfzouz |
|
| 18 |
|
uzss |
|
| 19 |
16 17 18
|
3syl |
|
| 20 |
8 19
|
eqssd |
|
| 21 |
|
simpl1 |
|
| 22 |
|
uz11 |
|
| 23 |
21 22
|
syl |
|
| 24 |
20 23
|
mpbid |
|
| 25 |
|
fzoend |
|
| 26 |
|
elfzoel2 |
|
| 27 |
|
eleq2 |
|
| 28 |
27
|
eqcoms |
|
| 29 |
|
elfzo2 |
|
| 30 |
|
simpl |
|
| 31 |
|
simprl |
|
| 32 |
|
zlem1lt |
|
| 33 |
32
|
ancoms |
|
| 34 |
33
|
biimprd |
|
| 35 |
34
|
impancom |
|
| 36 |
35
|
impcom |
|
| 37 |
30 31 36
|
3jca |
|
| 38 |
37
|
expcom |
|
| 39 |
38
|
3adant1 |
|
| 40 |
39
|
a1d |
|
| 41 |
29 40
|
sylbi |
|
| 42 |
28 41
|
biimtrdi |
|
| 43 |
42
|
com23 |
|
| 44 |
43
|
impcom |
|
| 45 |
44
|
com13 |
|
| 46 |
26 45
|
mpcom |
|
| 47 |
25 46
|
syl |
|
| 48 |
15 47
|
mpcom |
|
| 49 |
|
eluz2 |
|
| 50 |
49
|
biimpri |
|
| 51 |
|
uzss |
|
| 52 |
48 50 51
|
3syl |
|
| 53 |
|
fzoend |
|
| 54 |
|
eleq2 |
|
| 55 |
|
elfzo2 |
|
| 56 |
|
pm3.2 |
|
| 57 |
56
|
3ad2ant2 |
|
| 58 |
57
|
com12 |
|
| 59 |
58
|
3adant1 |
|
| 60 |
55 59
|
sylbi |
|
| 61 |
54 60
|
biimtrdi |
|
| 62 |
61
|
com3l |
|
| 63 |
53 62
|
syl |
|
| 64 |
9 63
|
mpcom |
|
| 65 |
64
|
imp |
|
| 66 |
|
simpl |
|
| 67 |
|
simprl |
|
| 68 |
|
zlem1lt |
|
| 69 |
68
|
ancoms |
|
| 70 |
69
|
biimprd |
|
| 71 |
70
|
impancom |
|
| 72 |
71
|
impcom |
|
| 73 |
|
eluz2 |
|
| 74 |
66 67 72 73
|
syl3anbrc |
|
| 75 |
|
uzss |
|
| 76 |
65 74 75
|
3syl |
|
| 77 |
52 76
|
eqssd |
|
| 78 |
|
simpl2 |
|
| 79 |
|
uz11 |
|
| 80 |
78 79
|
syl |
|
| 81 |
77 80
|
mpbid |
|
| 82 |
24 81
|
jca |
|
| 83 |
82
|
ex |
|
| 84 |
|
oveq12 |
|
| 85 |
83 84
|
impbid1 |
|