| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzo0opth.1 |
|- ( ph -> M e. NN0 ) |
| 2 |
|
fzo0opth.2 |
|- ( ph -> N e. NN0 ) |
| 3 |
|
0z |
|- 0 e. ZZ |
| 4 |
1
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 5 |
|
simpr |
|- ( ( ph /\ 0 < M ) -> 0 < M ) |
| 6 |
|
fzoopth |
|- ( ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) -> ( ( 0 ..^ M ) = ( 0 ..^ N ) <-> ( 0 = 0 /\ M = N ) ) ) |
| 7 |
3 4 5 6
|
mp3an2ani |
|- ( ( ph /\ 0 < M ) -> ( ( 0 ..^ M ) = ( 0 ..^ N ) <-> ( 0 = 0 /\ M = N ) ) ) |
| 8 |
|
eqid |
|- 0 = 0 |
| 9 |
8
|
biantrur |
|- ( M = N <-> ( 0 = 0 /\ M = N ) ) |
| 10 |
7 9
|
bitr4di |
|- ( ( ph /\ 0 < M ) -> ( ( 0 ..^ M ) = ( 0 ..^ N ) <-> M = N ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ 0 = M ) -> 0 = M ) |
| 12 |
11
|
oveq2d |
|- ( ( ph /\ 0 = M ) -> ( 0 ..^ 0 ) = ( 0 ..^ M ) ) |
| 13 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 14 |
12 13
|
eqtr3di |
|- ( ( ph /\ 0 = M ) -> ( 0 ..^ M ) = (/) ) |
| 15 |
14
|
eqeq1d |
|- ( ( ph /\ 0 = M ) -> ( ( 0 ..^ M ) = ( 0 ..^ N ) <-> (/) = ( 0 ..^ N ) ) ) |
| 16 |
|
eqcom |
|- ( (/) = ( 0 ..^ N ) <-> ( 0 ..^ N ) = (/) ) |
| 17 |
15 16
|
bitrdi |
|- ( ( ph /\ 0 = M ) -> ( ( 0 ..^ M ) = ( 0 ..^ N ) <-> ( 0 ..^ N ) = (/) ) ) |
| 18 |
|
0zd |
|- ( ( ph /\ 0 = M ) -> 0 e. ZZ ) |
| 19 |
2
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ 0 = M ) -> N e. ZZ ) |
| 21 |
|
fzon |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( N <_ 0 <-> ( 0 ..^ N ) = (/) ) ) |
| 22 |
18 20 21
|
syl2anc |
|- ( ( ph /\ 0 = M ) -> ( N <_ 0 <-> ( 0 ..^ N ) = (/) ) ) |
| 23 |
|
nn0le0eq0 |
|- ( N e. NN0 -> ( N <_ 0 <-> N = 0 ) ) |
| 24 |
23
|
biimpa |
|- ( ( N e. NN0 /\ N <_ 0 ) -> N = 0 ) |
| 25 |
2 24
|
sylan |
|- ( ( ph /\ N <_ 0 ) -> N = 0 ) |
| 26 |
25
|
adantlr |
|- ( ( ( ph /\ 0 = M ) /\ N <_ 0 ) -> N = 0 ) |
| 27 |
|
id |
|- ( N = 0 -> N = 0 ) |
| 28 |
|
0le0 |
|- 0 <_ 0 |
| 29 |
27 28
|
eqbrtrdi |
|- ( N = 0 -> N <_ 0 ) |
| 30 |
29
|
adantl |
|- ( ( ( ph /\ 0 = M ) /\ N = 0 ) -> N <_ 0 ) |
| 31 |
26 30
|
impbida |
|- ( ( ph /\ 0 = M ) -> ( N <_ 0 <-> N = 0 ) ) |
| 32 |
|
eqcom |
|- ( N = 0 <-> 0 = N ) |
| 33 |
32
|
a1i |
|- ( ( ph /\ 0 = M ) -> ( N = 0 <-> 0 = N ) ) |
| 34 |
11
|
eqeq1d |
|- ( ( ph /\ 0 = M ) -> ( 0 = N <-> M = N ) ) |
| 35 |
31 33 34
|
3bitrd |
|- ( ( ph /\ 0 = M ) -> ( N <_ 0 <-> M = N ) ) |
| 36 |
17 22 35
|
3bitr2d |
|- ( ( ph /\ 0 = M ) -> ( ( 0 ..^ M ) = ( 0 ..^ N ) <-> M = N ) ) |
| 37 |
1
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
| 38 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 39 |
1
|
nn0red |
|- ( ph -> M e. RR ) |
| 40 |
38 39
|
leloed |
|- ( ph -> ( 0 <_ M <-> ( 0 < M \/ 0 = M ) ) ) |
| 41 |
37 40
|
mpbid |
|- ( ph -> ( 0 < M \/ 0 = M ) ) |
| 42 |
10 36 41
|
mpjaodan |
|- ( ph -> ( ( 0 ..^ M ) = ( 0 ..^ N ) <-> M = N ) ) |