Step |
Hyp |
Ref |
Expression |
1 |
|
fzo0opth.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
2 |
|
fzo0opth.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑀 ) → 0 < 𝑀 ) |
6 |
|
fzoopth |
⊢ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) → ( ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ↔ ( 0 = 0 ∧ 𝑀 = 𝑁 ) ) ) |
7 |
3 4 5 6
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 0 < 𝑀 ) → ( ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ↔ ( 0 = 0 ∧ 𝑀 = 𝑁 ) ) ) |
8 |
|
eqid |
⊢ 0 = 0 |
9 |
8
|
biantrur |
⊢ ( 𝑀 = 𝑁 ↔ ( 0 = 0 ∧ 𝑀 = 𝑁 ) ) |
10 |
7 9
|
bitr4di |
⊢ ( ( 𝜑 ∧ 0 < 𝑀 ) → ( ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → 0 = 𝑀 ) |
12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( 0 ..^ 0 ) = ( 0 ..^ 𝑀 ) ) |
13 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
14 |
12 13
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( 0 ..^ 𝑀 ) = ∅ ) |
15 |
14
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ↔ ∅ = ( 0 ..^ 𝑁 ) ) ) |
16 |
|
eqcom |
⊢ ( ∅ = ( 0 ..^ 𝑁 ) ↔ ( 0 ..^ 𝑁 ) = ∅ ) |
17 |
15 16
|
bitrdi |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ↔ ( 0 ..^ 𝑁 ) = ∅ ) ) |
18 |
|
0zd |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → 0 ∈ ℤ ) |
19 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → 𝑁 ∈ ℤ ) |
21 |
|
fzon |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 0 ↔ ( 0 ..^ 𝑁 ) = ∅ ) ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( 𝑁 ≤ 0 ↔ ( 0 ..^ 𝑁 ) = ∅ ) ) |
23 |
|
nn0le0eq0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 0 ↔ 𝑁 = 0 ) ) |
24 |
23
|
biimpa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 0 ) → 𝑁 = 0 ) |
25 |
2 24
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑁 ≤ 0 ) → 𝑁 = 0 ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 = 𝑀 ) ∧ 𝑁 ≤ 0 ) → 𝑁 = 0 ) |
27 |
|
id |
⊢ ( 𝑁 = 0 → 𝑁 = 0 ) |
28 |
|
0le0 |
⊢ 0 ≤ 0 |
29 |
27 28
|
eqbrtrdi |
⊢ ( 𝑁 = 0 → 𝑁 ≤ 0 ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 0 = 𝑀 ) ∧ 𝑁 = 0 ) → 𝑁 ≤ 0 ) |
31 |
26 30
|
impbida |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( 𝑁 ≤ 0 ↔ 𝑁 = 0 ) ) |
32 |
|
eqcom |
⊢ ( 𝑁 = 0 ↔ 0 = 𝑁 ) |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( 𝑁 = 0 ↔ 0 = 𝑁 ) ) |
34 |
11
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( 0 = 𝑁 ↔ 𝑀 = 𝑁 ) ) |
35 |
31 33 34
|
3bitrd |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( 𝑁 ≤ 0 ↔ 𝑀 = 𝑁 ) ) |
36 |
17 22 35
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 0 = 𝑀 ) → ( ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |
37 |
1
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
38 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
39 |
1
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
40 |
38 39
|
leloed |
⊢ ( 𝜑 → ( 0 ≤ 𝑀 ↔ ( 0 < 𝑀 ∨ 0 = 𝑀 ) ) ) |
41 |
37 40
|
mpbid |
⊢ ( 𝜑 → ( 0 < 𝑀 ∨ 0 = 𝑀 ) ) |
42 |
10 36 41
|
mpjaodan |
⊢ ( 𝜑 → ( ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |