Metamath Proof Explorer


Theorem rprmasso3

Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses rprmasso.b B = Base R
rprmasso.p P = RPrime R
rprmasso.d ˙ = r R
rprmasso.r φ R IDomn
rprmasso.x φ X P
rprmasso.1 φ X ˙ Y
rprmasso2.y φ Y P
rprmasso3.1 · ˙ = R
rprmasso3.u U = Unit R
Assertion rprmasso3 φ t U t · ˙ X = Y

Proof

Step Hyp Ref Expression
1 rprmasso.b B = Base R
2 rprmasso.p P = RPrime R
3 rprmasso.d ˙ = r R
4 rprmasso.r φ R IDomn
5 rprmasso.x φ X P
6 rprmasso.1 φ X ˙ Y
7 rprmasso2.y φ Y P
8 rprmasso3.1 · ˙ = R
9 rprmasso3.u U = Unit R
10 1 2 3 4 5 6 7 rprmasso2 φ Y ˙ X
11 eqid RSpan R = RSpan R
12 1 2 4 5 rprmcl φ X B
13 1 2 4 7 rprmcl φ Y B
14 1 11 3 12 13 9 8 4 dvdsruasso φ X ˙ Y Y ˙ X t U t · ˙ X = Y
15 6 10 14 mpbi2and φ t U t · ˙ X = Y