Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rprmasso.b | |- B = ( Base ` R ) |
|
| rprmasso.p | |- P = ( RPrime ` R ) |
||
| rprmasso.d | |- .|| = ( ||r ` R ) |
||
| rprmasso.r | |- ( ph -> R e. IDomn ) |
||
| rprmasso.x | |- ( ph -> X e. P ) |
||
| rprmasso.1 | |- ( ph -> X .|| Y ) |
||
| rprmasso2.y | |- ( ph -> Y e. P ) |
||
| rprmasso3.1 | |- .x. = ( .r ` R ) |
||
| rprmasso3.u | |- U = ( Unit ` R ) |
||
| Assertion | rprmasso3 | |- ( ph -> E. t e. U ( t .x. X ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmasso.b | |- B = ( Base ` R ) |
|
| 2 | rprmasso.p | |- P = ( RPrime ` R ) |
|
| 3 | rprmasso.d | |- .|| = ( ||r ` R ) |
|
| 4 | rprmasso.r | |- ( ph -> R e. IDomn ) |
|
| 5 | rprmasso.x | |- ( ph -> X e. P ) |
|
| 6 | rprmasso.1 | |- ( ph -> X .|| Y ) |
|
| 7 | rprmasso2.y | |- ( ph -> Y e. P ) |
|
| 8 | rprmasso3.1 | |- .x. = ( .r ` R ) |
|
| 9 | rprmasso3.u | |- U = ( Unit ` R ) |
|
| 10 | 1 2 3 4 5 6 7 | rprmasso2 | |- ( ph -> Y .|| X ) |
| 11 | eqid | |- ( RSpan ` R ) = ( RSpan ` R ) |
|
| 12 | 1 2 4 5 | rprmcl | |- ( ph -> X e. B ) |
| 13 | 1 2 4 7 | rprmcl | |- ( ph -> Y e. B ) |
| 14 | 1 11 3 12 13 9 8 4 | dvdsruasso | |- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> E. t e. U ( t .x. X ) = Y ) ) |
| 15 | 6 10 14 | mpbi2and | |- ( ph -> E. t e. U ( t .x. X ) = Y ) |