Metamath Proof Explorer


Theorem rprmasso3

Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses rprmasso.b
|- B = ( Base ` R )
rprmasso.p
|- P = ( RPrime ` R )
rprmasso.d
|- .|| = ( ||r ` R )
rprmasso.r
|- ( ph -> R e. IDomn )
rprmasso.x
|- ( ph -> X e. P )
rprmasso.1
|- ( ph -> X .|| Y )
rprmasso2.y
|- ( ph -> Y e. P )
rprmasso3.1
|- .x. = ( .r ` R )
rprmasso3.u
|- U = ( Unit ` R )
Assertion rprmasso3
|- ( ph -> E. t e. U ( t .x. X ) = Y )

Proof

Step Hyp Ref Expression
1 rprmasso.b
 |-  B = ( Base ` R )
2 rprmasso.p
 |-  P = ( RPrime ` R )
3 rprmasso.d
 |-  .|| = ( ||r ` R )
4 rprmasso.r
 |-  ( ph -> R e. IDomn )
5 rprmasso.x
 |-  ( ph -> X e. P )
6 rprmasso.1
 |-  ( ph -> X .|| Y )
7 rprmasso2.y
 |-  ( ph -> Y e. P )
8 rprmasso3.1
 |-  .x. = ( .r ` R )
9 rprmasso3.u
 |-  U = ( Unit ` R )
10 1 2 3 4 5 6 7 rprmasso2
 |-  ( ph -> Y .|| X )
11 eqid
 |-  ( RSpan ` R ) = ( RSpan ` R )
12 1 2 4 5 rprmcl
 |-  ( ph -> X e. B )
13 1 2 4 7 rprmcl
 |-  ( ph -> Y e. B )
14 1 11 3 12 13 9 8 4 dvdsruasso
 |-  ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> E. t e. U ( t .x. X ) = Y ) )
15 6 10 14 mpbi2and
 |-  ( ph -> E. t e. U ( t .x. X ) = Y )