Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rprmasso.b | |- B = ( Base ` R ) |
|
rprmasso.p | |- P = ( RPrime ` R ) |
||
rprmasso.d | |- .|| = ( ||r ` R ) |
||
rprmasso.r | |- ( ph -> R e. IDomn ) |
||
rprmasso.x | |- ( ph -> X e. P ) |
||
rprmasso.1 | |- ( ph -> X .|| Y ) |
||
rprmasso2.y | |- ( ph -> Y e. P ) |
||
rprmasso3.1 | |- .x. = ( .r ` R ) |
||
rprmasso3.u | |- U = ( Unit ` R ) |
||
Assertion | rprmasso3 | |- ( ph -> E. t e. U ( t .x. X ) = Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprmasso.b | |- B = ( Base ` R ) |
|
2 | rprmasso.p | |- P = ( RPrime ` R ) |
|
3 | rprmasso.d | |- .|| = ( ||r ` R ) |
|
4 | rprmasso.r | |- ( ph -> R e. IDomn ) |
|
5 | rprmasso.x | |- ( ph -> X e. P ) |
|
6 | rprmasso.1 | |- ( ph -> X .|| Y ) |
|
7 | rprmasso2.y | |- ( ph -> Y e. P ) |
|
8 | rprmasso3.1 | |- .x. = ( .r ` R ) |
|
9 | rprmasso3.u | |- U = ( Unit ` R ) |
|
10 | 1 2 3 4 5 6 7 | rprmasso2 | |- ( ph -> Y .|| X ) |
11 | eqid | |- ( RSpan ` R ) = ( RSpan ` R ) |
|
12 | 1 2 4 5 | rprmcl | |- ( ph -> X e. B ) |
13 | 1 2 4 7 | rprmcl | |- ( ph -> Y e. B ) |
14 | 1 11 3 12 13 9 8 4 | dvdsruasso | |- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> E. t e. U ( t .x. X ) = Y ) ) |
15 | 6 10 14 | mpbi2and | |- ( ph -> E. t e. U ( t .x. X ) = Y ) |