Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulrprm.p |
|- P = ( RPrime ` R ) |
2 |
|
unitmulrprm.u |
|- U = ( Unit ` R ) |
3 |
|
unitmulrprm.t |
|- .x. = ( .r ` R ) |
4 |
|
unitmulrprm.r |
|- ( ph -> R e. IDomn ) |
5 |
|
unitmulrprm.i |
|- ( ph -> I e. U ) |
6 |
|
unitmulrprm.q |
|- ( ph -> Q e. P ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
9 |
7 1 4 6
|
rprmcl |
|- ( ph -> Q e. ( Base ` R ) ) |
10 |
|
oveq1 |
|- ( i = I -> ( i .x. Q ) = ( I .x. Q ) ) |
11 |
10
|
eqeq1d |
|- ( i = I -> ( ( i .x. Q ) = ( I .x. Q ) <-> ( I .x. Q ) = ( I .x. Q ) ) ) |
12 |
7 2
|
unitcl |
|- ( I e. U -> I e. ( Base ` R ) ) |
13 |
5 12
|
syl |
|- ( ph -> I e. ( Base ` R ) ) |
14 |
|
eqidd |
|- ( ph -> ( I .x. Q ) = ( I .x. Q ) ) |
15 |
11 13 14
|
rspcedvdw |
|- ( ph -> E. i e. ( Base ` R ) ( i .x. Q ) = ( I .x. Q ) ) |
16 |
7 8 3
|
dvdsr |
|- ( Q ( ||r ` R ) ( I .x. Q ) <-> ( Q e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i .x. Q ) = ( I .x. Q ) ) ) |
17 |
9 15 16
|
sylanbrc |
|- ( ph -> Q ( ||r ` R ) ( I .x. Q ) ) |
18 |
4
|
idomringd |
|- ( ph -> R e. Ring ) |
19 |
7 3 18 13 9
|
ringcld |
|- ( ph -> ( I .x. Q ) e. ( Base ` R ) ) |
20 |
|
oveq1 |
|- ( i = ( ( invr ` R ) ` I ) -> ( i .x. ( I .x. Q ) ) = ( ( ( invr ` R ) ` I ) .x. ( I .x. Q ) ) ) |
21 |
20
|
eqeq1d |
|- ( i = ( ( invr ` R ) ` I ) -> ( ( i .x. ( I .x. Q ) ) = Q <-> ( ( ( invr ` R ) ` I ) .x. ( I .x. Q ) ) = Q ) ) |
22 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
23 |
2 22 7
|
ringinvcl |
|- ( ( R e. Ring /\ I e. U ) -> ( ( invr ` R ) ` I ) e. ( Base ` R ) ) |
24 |
18 5 23
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` I ) e. ( Base ` R ) ) |
25 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
26 |
2 22 3 25
|
unitlinv |
|- ( ( R e. Ring /\ I e. U ) -> ( ( ( invr ` R ) ` I ) .x. I ) = ( 1r ` R ) ) |
27 |
18 5 26
|
syl2anc |
|- ( ph -> ( ( ( invr ` R ) ` I ) .x. I ) = ( 1r ` R ) ) |
28 |
27
|
oveq1d |
|- ( ph -> ( ( ( ( invr ` R ) ` I ) .x. I ) .x. Q ) = ( ( 1r ` R ) .x. Q ) ) |
29 |
7 3 18 24 13 9
|
ringassd |
|- ( ph -> ( ( ( ( invr ` R ) ` I ) .x. I ) .x. Q ) = ( ( ( invr ` R ) ` I ) .x. ( I .x. Q ) ) ) |
30 |
7 3 25 18 9
|
ringlidmd |
|- ( ph -> ( ( 1r ` R ) .x. Q ) = Q ) |
31 |
28 29 30
|
3eqtr3d |
|- ( ph -> ( ( ( invr ` R ) ` I ) .x. ( I .x. Q ) ) = Q ) |
32 |
21 24 31
|
rspcedvdw |
|- ( ph -> E. i e. ( Base ` R ) ( i .x. ( I .x. Q ) ) = Q ) |
33 |
7 8 3
|
dvdsr |
|- ( ( I .x. Q ) ( ||r ` R ) Q <-> ( ( I .x. Q ) e. ( Base ` R ) /\ E. i e. ( Base ` R ) ( i .x. ( I .x. Q ) ) = Q ) ) |
34 |
19 32 33
|
sylanbrc |
|- ( ph -> ( I .x. Q ) ( ||r ` R ) Q ) |
35 |
7 1 8 4 6 17 34
|
rprmasso |
|- ( ph -> ( I .x. Q ) e. P ) |