Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulrprm.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
2 |
|
unitmulrprm.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
3 |
|
unitmulrprm.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
unitmulrprm.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
5 |
|
unitmulrprm.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
6 |
|
unitmulrprm.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
9 |
7 1 4 6
|
rprmcl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝑅 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) ↔ ( 𝐼 · 𝑄 ) = ( 𝐼 · 𝑄 ) ) ) |
12 |
7 2
|
unitcl |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ∈ ( Base ‘ 𝑅 ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( Base ‘ 𝑅 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐼 · 𝑄 ) = ( 𝐼 · 𝑄 ) ) |
15 |
11 13 14
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) ) |
16 |
7 8 3
|
dvdsr |
⊢ ( 𝑄 ( ∥r ‘ 𝑅 ) ( 𝐼 · 𝑄 ) ↔ ( 𝑄 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) ) ) |
17 |
9 15 16
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ( ∥r ‘ 𝑅 ) ( 𝐼 · 𝑄 ) ) |
18 |
4
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
19 |
7 3 18 13 9
|
ringcld |
⊢ ( 𝜑 → ( 𝐼 · 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑖 = ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) → ( 𝑖 · ( 𝐼 · 𝑄 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑖 = ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) → ( ( 𝑖 · ( 𝐼 · 𝑄 ) ) = 𝑄 ↔ ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) = 𝑄 ) ) |
22 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
23 |
2 22 7
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
24 |
18 5 23
|
syl2anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
26 |
2 22 3 25
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · 𝐼 ) = ( 1r ‘ 𝑅 ) ) |
27 |
18 5 26
|
syl2anc |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · 𝐼 ) = ( 1r ‘ 𝑅 ) ) |
28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · 𝐼 ) · 𝑄 ) = ( ( 1r ‘ 𝑅 ) · 𝑄 ) ) |
29 |
7 3 18 24 13 9
|
ringassd |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · 𝐼 ) · 𝑄 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) ) |
30 |
7 3 25 18 9
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑄 ) = 𝑄 ) |
31 |
28 29 30
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) = 𝑄 ) |
32 |
21 24 31
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · ( 𝐼 · 𝑄 ) ) = 𝑄 ) |
33 |
7 8 3
|
dvdsr |
⊢ ( ( 𝐼 · 𝑄 ) ( ∥r ‘ 𝑅 ) 𝑄 ↔ ( ( 𝐼 · 𝑄 ) ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · ( 𝐼 · 𝑄 ) ) = 𝑄 ) ) |
34 |
19 32 33
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐼 · 𝑄 ) ( ∥r ‘ 𝑅 ) 𝑄 ) |
35 |
7 1 8 4 6 17 34
|
rprmasso |
⊢ ( 𝜑 → ( 𝐼 · 𝑄 ) ∈ 𝑃 ) |