Metamath Proof Explorer


Theorem unitmulrprm

Description: A ring unit multiplied by a ring prime is a ring prime. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses unitmulrprm.p 𝑃 = ( RPrime ‘ 𝑅 )
unitmulrprm.u 𝑈 = ( Unit ‘ 𝑅 )
unitmulrprm.t · = ( .r𝑅 )
unitmulrprm.r ( 𝜑𝑅 ∈ IDomn )
unitmulrprm.i ( 𝜑𝐼𝑈 )
unitmulrprm.q ( 𝜑𝑄𝑃 )
Assertion unitmulrprm ( 𝜑 → ( 𝐼 · 𝑄 ) ∈ 𝑃 )

Proof

Step Hyp Ref Expression
1 unitmulrprm.p 𝑃 = ( RPrime ‘ 𝑅 )
2 unitmulrprm.u 𝑈 = ( Unit ‘ 𝑅 )
3 unitmulrprm.t · = ( .r𝑅 )
4 unitmulrprm.r ( 𝜑𝑅 ∈ IDomn )
5 unitmulrprm.i ( 𝜑𝐼𝑈 )
6 unitmulrprm.q ( 𝜑𝑄𝑃 )
7 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
8 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
9 7 1 4 6 rprmcl ( 𝜑𝑄 ∈ ( Base ‘ 𝑅 ) )
10 oveq1 ( 𝑖 = 𝐼 → ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) )
11 10 eqeq1d ( 𝑖 = 𝐼 → ( ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) ↔ ( 𝐼 · 𝑄 ) = ( 𝐼 · 𝑄 ) ) )
12 7 2 unitcl ( 𝐼𝑈𝐼 ∈ ( Base ‘ 𝑅 ) )
13 5 12 syl ( 𝜑𝐼 ∈ ( Base ‘ 𝑅 ) )
14 eqidd ( 𝜑 → ( 𝐼 · 𝑄 ) = ( 𝐼 · 𝑄 ) )
15 11 13 14 rspcedvdw ( 𝜑 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) )
16 7 8 3 dvdsr ( 𝑄 ( ∥r𝑅 ) ( 𝐼 · 𝑄 ) ↔ ( 𝑄 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · 𝑄 ) = ( 𝐼 · 𝑄 ) ) )
17 9 15 16 sylanbrc ( 𝜑𝑄 ( ∥r𝑅 ) ( 𝐼 · 𝑄 ) )
18 4 idomringd ( 𝜑𝑅 ∈ Ring )
19 7 3 18 13 9 ringcld ( 𝜑 → ( 𝐼 · 𝑄 ) ∈ ( Base ‘ 𝑅 ) )
20 oveq1 ( 𝑖 = ( ( invr𝑅 ) ‘ 𝐼 ) → ( 𝑖 · ( 𝐼 · 𝑄 ) ) = ( ( ( invr𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) )
21 20 eqeq1d ( 𝑖 = ( ( invr𝑅 ) ‘ 𝐼 ) → ( ( 𝑖 · ( 𝐼 · 𝑄 ) ) = 𝑄 ↔ ( ( ( invr𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) = 𝑄 ) )
22 eqid ( invr𝑅 ) = ( invr𝑅 )
23 2 22 7 ringinvcl ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( ( invr𝑅 ) ‘ 𝐼 ) ∈ ( Base ‘ 𝑅 ) )
24 18 5 23 syl2anc ( 𝜑 → ( ( invr𝑅 ) ‘ 𝐼 ) ∈ ( Base ‘ 𝑅 ) )
25 eqid ( 1r𝑅 ) = ( 1r𝑅 )
26 2 22 3 25 unitlinv ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → ( ( ( invr𝑅 ) ‘ 𝐼 ) · 𝐼 ) = ( 1r𝑅 ) )
27 18 5 26 syl2anc ( 𝜑 → ( ( ( invr𝑅 ) ‘ 𝐼 ) · 𝐼 ) = ( 1r𝑅 ) )
28 27 oveq1d ( 𝜑 → ( ( ( ( invr𝑅 ) ‘ 𝐼 ) · 𝐼 ) · 𝑄 ) = ( ( 1r𝑅 ) · 𝑄 ) )
29 7 3 18 24 13 9 ringassd ( 𝜑 → ( ( ( ( invr𝑅 ) ‘ 𝐼 ) · 𝐼 ) · 𝑄 ) = ( ( ( invr𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) )
30 7 3 25 18 9 ringlidmd ( 𝜑 → ( ( 1r𝑅 ) · 𝑄 ) = 𝑄 )
31 28 29 30 3eqtr3d ( 𝜑 → ( ( ( invr𝑅 ) ‘ 𝐼 ) · ( 𝐼 · 𝑄 ) ) = 𝑄 )
32 21 24 31 rspcedvdw ( 𝜑 → ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · ( 𝐼 · 𝑄 ) ) = 𝑄 )
33 7 8 3 dvdsr ( ( 𝐼 · 𝑄 ) ( ∥r𝑅 ) 𝑄 ↔ ( ( 𝐼 · 𝑄 ) ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑅 ) ( 𝑖 · ( 𝐼 · 𝑄 ) ) = 𝑄 ) )
34 19 32 33 sylanbrc ( 𝜑 → ( 𝐼 · 𝑄 ) ( ∥r𝑅 ) 𝑄 )
35 7 1 8 4 6 17 34 rprmasso ( 𝜑 → ( 𝐼 · 𝑄 ) ∈ 𝑃 )