| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmndvdsru.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
rprmndvdsru.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
| 3 |
|
rprmndvdsru.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
rprmndvdsru.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
rprmndvdsru.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 6 |
|
rprmndvdsru.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑈 ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 8 |
7 3 2 4 5
|
rprmndvdsr1 |
⊢ ( 𝜑 → ¬ 𝑄 ∥ ( 1r ‘ 𝑅 ) ) |
| 9 |
4
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
1 7 3
|
crngunit |
⊢ ( 𝑅 ∈ CRing → ( 𝑇 ∈ 𝑈 ↔ 𝑇 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 11 |
10
|
biimpa |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑇 ∈ 𝑈 ) → 𝑇 ∥ ( 1r ‘ 𝑅 ) ) |
| 12 |
4 6 11
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∥ ( 1r ‘ 𝑅 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 14 |
13 3
|
dvdsrtr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∥ 𝑇 ∧ 𝑇 ∥ ( 1r ‘ 𝑅 ) ) → 𝑄 ∥ ( 1r ‘ 𝑅 ) ) |
| 15 |
14
|
3expa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑄 ∥ 𝑇 ) ∧ 𝑇 ∥ ( 1r ‘ 𝑅 ) ) → 𝑄 ∥ ( 1r ‘ 𝑅 ) ) |
| 16 |
15
|
an32s |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ∥ ( 1r ‘ 𝑅 ) ) ∧ 𝑄 ∥ 𝑇 ) → 𝑄 ∥ ( 1r ‘ 𝑅 ) ) |
| 17 |
16
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑇 ∥ ( 1r ‘ 𝑅 ) ) → ( 𝑄 ∥ 𝑇 → 𝑄 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 18 |
9 12 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∥ 𝑇 → 𝑄 ∥ ( 1r ‘ 𝑅 ) ) ) |
| 19 |
8 18
|
mtod |
⊢ ( 𝜑 → ¬ 𝑄 ∥ 𝑇 ) |