Metamath Proof Explorer


Theorem rprmndvdsru

Description: A ring prime element does not divide any ring unit. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses rprmndvdsru.u 𝑈 = ( Unit ‘ 𝑅 )
rprmndvdsru.p 𝑃 = ( RPrime ‘ 𝑅 )
rprmndvdsru.d = ( ∥r𝑅 )
rprmndvdsru.r ( 𝜑𝑅 ∈ CRing )
rprmndvdsru.q ( 𝜑𝑄𝑃 )
rprmndvdsru.t ( 𝜑𝑇𝑈 )
Assertion rprmndvdsru ( 𝜑 → ¬ 𝑄 𝑇 )

Proof

Step Hyp Ref Expression
1 rprmndvdsru.u 𝑈 = ( Unit ‘ 𝑅 )
2 rprmndvdsru.p 𝑃 = ( RPrime ‘ 𝑅 )
3 rprmndvdsru.d = ( ∥r𝑅 )
4 rprmndvdsru.r ( 𝜑𝑅 ∈ CRing )
5 rprmndvdsru.q ( 𝜑𝑄𝑃 )
6 rprmndvdsru.t ( 𝜑𝑇𝑈 )
7 eqid ( 1r𝑅 ) = ( 1r𝑅 )
8 7 3 2 4 5 rprmndvdsr1 ( 𝜑 → ¬ 𝑄 ( 1r𝑅 ) )
9 4 crngringd ( 𝜑𝑅 ∈ Ring )
10 1 7 3 crngunit ( 𝑅 ∈ CRing → ( 𝑇𝑈𝑇 ( 1r𝑅 ) ) )
11 10 biimpa ( ( 𝑅 ∈ CRing ∧ 𝑇𝑈 ) → 𝑇 ( 1r𝑅 ) )
12 4 6 11 syl2anc ( 𝜑𝑇 ( 1r𝑅 ) )
13 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
14 13 3 dvdsrtr ( ( 𝑅 ∈ Ring ∧ 𝑄 𝑇𝑇 ( 1r𝑅 ) ) → 𝑄 ( 1r𝑅 ) )
15 14 3expa ( ( ( 𝑅 ∈ Ring ∧ 𝑄 𝑇 ) ∧ 𝑇 ( 1r𝑅 ) ) → 𝑄 ( 1r𝑅 ) )
16 15 an32s ( ( ( 𝑅 ∈ Ring ∧ 𝑇 ( 1r𝑅 ) ) ∧ 𝑄 𝑇 ) → 𝑄 ( 1r𝑅 ) )
17 16 ex ( ( 𝑅 ∈ Ring ∧ 𝑇 ( 1r𝑅 ) ) → ( 𝑄 𝑇𝑄 ( 1r𝑅 ) ) )
18 9 12 17 syl2anc ( 𝜑 → ( 𝑄 𝑇𝑄 ( 1r𝑅 ) ) )
19 8 18 mtod ( 𝜑 → ¬ 𝑄 𝑇 )