Metamath Proof Explorer


Theorem rprmndvdsru

Description: A ring prime element does not divide any ring unit. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses rprmndvdsru.u U = Unit R
rprmndvdsru.p P = RPrime R
rprmndvdsru.d ˙ = r R
rprmndvdsru.r φ R CRing
rprmndvdsru.q φ Q P
rprmndvdsru.t φ T U
Assertion rprmndvdsru φ ¬ Q ˙ T

Proof

Step Hyp Ref Expression
1 rprmndvdsru.u U = Unit R
2 rprmndvdsru.p P = RPrime R
3 rprmndvdsru.d ˙ = r R
4 rprmndvdsru.r φ R CRing
5 rprmndvdsru.q φ Q P
6 rprmndvdsru.t φ T U
7 eqid 1 R = 1 R
8 7 3 2 4 5 rprmndvdsr1 φ ¬ Q ˙ 1 R
9 4 crngringd φ R Ring
10 1 7 3 crngunit R CRing T U T ˙ 1 R
11 10 biimpa R CRing T U T ˙ 1 R
12 4 6 11 syl2anc φ T ˙ 1 R
13 eqid Base R = Base R
14 13 3 dvdsrtr R Ring Q ˙ T T ˙ 1 R Q ˙ 1 R
15 14 3expa R Ring Q ˙ T T ˙ 1 R Q ˙ 1 R
16 15 an32s R Ring T ˙ 1 R Q ˙ T Q ˙ 1 R
17 16 ex R Ring T ˙ 1 R Q ˙ T Q ˙ 1 R
18 9 12 17 syl2anc φ Q ˙ T Q ˙ 1 R
19 8 18 mtod φ ¬ Q ˙ T