| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmndvdsru.u |
|- U = ( Unit ` R ) |
| 2 |
|
rprmndvdsru.p |
|- P = ( RPrime ` R ) |
| 3 |
|
rprmndvdsru.d |
|- .|| = ( ||r ` R ) |
| 4 |
|
rprmndvdsru.r |
|- ( ph -> R e. CRing ) |
| 5 |
|
rprmndvdsru.q |
|- ( ph -> Q e. P ) |
| 6 |
|
rprmndvdsru.t |
|- ( ph -> T e. U ) |
| 7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 8 |
7 3 2 4 5
|
rprmndvdsr1 |
|- ( ph -> -. Q .|| ( 1r ` R ) ) |
| 9 |
4
|
crngringd |
|- ( ph -> R e. Ring ) |
| 10 |
1 7 3
|
crngunit |
|- ( R e. CRing -> ( T e. U <-> T .|| ( 1r ` R ) ) ) |
| 11 |
10
|
biimpa |
|- ( ( R e. CRing /\ T e. U ) -> T .|| ( 1r ` R ) ) |
| 12 |
4 6 11
|
syl2anc |
|- ( ph -> T .|| ( 1r ` R ) ) |
| 13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 14 |
13 3
|
dvdsrtr |
|- ( ( R e. Ring /\ Q .|| T /\ T .|| ( 1r ` R ) ) -> Q .|| ( 1r ` R ) ) |
| 15 |
14
|
3expa |
|- ( ( ( R e. Ring /\ Q .|| T ) /\ T .|| ( 1r ` R ) ) -> Q .|| ( 1r ` R ) ) |
| 16 |
15
|
an32s |
|- ( ( ( R e. Ring /\ T .|| ( 1r ` R ) ) /\ Q .|| T ) -> Q .|| ( 1r ` R ) ) |
| 17 |
16
|
ex |
|- ( ( R e. Ring /\ T .|| ( 1r ` R ) ) -> ( Q .|| T -> Q .|| ( 1r ` R ) ) ) |
| 18 |
9 12 17
|
syl2anc |
|- ( ph -> ( Q .|| T -> Q .|| ( 1r ` R ) ) ) |
| 19 |
8 18
|
mtod |
|- ( ph -> -. Q .|| T ) |