Metamath Proof Explorer


Theorem rprmndvdsru

Description: A ring prime element does not divide any ring unit. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses rprmndvdsru.u
|- U = ( Unit ` R )
rprmndvdsru.p
|- P = ( RPrime ` R )
rprmndvdsru.d
|- .|| = ( ||r ` R )
rprmndvdsru.r
|- ( ph -> R e. CRing )
rprmndvdsru.q
|- ( ph -> Q e. P )
rprmndvdsru.t
|- ( ph -> T e. U )
Assertion rprmndvdsru
|- ( ph -> -. Q .|| T )

Proof

Step Hyp Ref Expression
1 rprmndvdsru.u
 |-  U = ( Unit ` R )
2 rprmndvdsru.p
 |-  P = ( RPrime ` R )
3 rprmndvdsru.d
 |-  .|| = ( ||r ` R )
4 rprmndvdsru.r
 |-  ( ph -> R e. CRing )
5 rprmndvdsru.q
 |-  ( ph -> Q e. P )
6 rprmndvdsru.t
 |-  ( ph -> T e. U )
7 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
8 7 3 2 4 5 rprmndvdsr1
 |-  ( ph -> -. Q .|| ( 1r ` R ) )
9 4 crngringd
 |-  ( ph -> R e. Ring )
10 1 7 3 crngunit
 |-  ( R e. CRing -> ( T e. U <-> T .|| ( 1r ` R ) ) )
11 10 biimpa
 |-  ( ( R e. CRing /\ T e. U ) -> T .|| ( 1r ` R ) )
12 4 6 11 syl2anc
 |-  ( ph -> T .|| ( 1r ` R ) )
13 eqid
 |-  ( Base ` R ) = ( Base ` R )
14 13 3 dvdsrtr
 |-  ( ( R e. Ring /\ Q .|| T /\ T .|| ( 1r ` R ) ) -> Q .|| ( 1r ` R ) )
15 14 3expa
 |-  ( ( ( R e. Ring /\ Q .|| T ) /\ T .|| ( 1r ` R ) ) -> Q .|| ( 1r ` R ) )
16 15 an32s
 |-  ( ( ( R e. Ring /\ T .|| ( 1r ` R ) ) /\ Q .|| T ) -> Q .|| ( 1r ` R ) )
17 16 ex
 |-  ( ( R e. Ring /\ T .|| ( 1r ` R ) ) -> ( Q .|| T -> Q .|| ( 1r ` R ) ) )
18 9 12 17 syl2anc
 |-  ( ph -> ( Q .|| T -> Q .|| ( 1r ` R ) ) )
19 8 18 mtod
 |-  ( ph -> -. Q .|| T )