Metamath Proof Explorer


Theorem rprmasso3

Description: In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses rprmasso.b 𝐵 = ( Base ‘ 𝑅 )
rprmasso.p 𝑃 = ( RPrime ‘ 𝑅 )
rprmasso.d = ( ∥r𝑅 )
rprmasso.r ( 𝜑𝑅 ∈ IDomn )
rprmasso.x ( 𝜑𝑋𝑃 )
rprmasso.1 ( 𝜑𝑋 𝑌 )
rprmasso2.y ( 𝜑𝑌𝑃 )
rprmasso3.1 · = ( .r𝑅 )
rprmasso3.u 𝑈 = ( Unit ‘ 𝑅 )
Assertion rprmasso3 ( 𝜑 → ∃ 𝑡𝑈 ( 𝑡 · 𝑋 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 rprmasso.b 𝐵 = ( Base ‘ 𝑅 )
2 rprmasso.p 𝑃 = ( RPrime ‘ 𝑅 )
3 rprmasso.d = ( ∥r𝑅 )
4 rprmasso.r ( 𝜑𝑅 ∈ IDomn )
5 rprmasso.x ( 𝜑𝑋𝑃 )
6 rprmasso.1 ( 𝜑𝑋 𝑌 )
7 rprmasso2.y ( 𝜑𝑌𝑃 )
8 rprmasso3.1 · = ( .r𝑅 )
9 rprmasso3.u 𝑈 = ( Unit ‘ 𝑅 )
10 1 2 3 4 5 6 7 rprmasso2 ( 𝜑𝑌 𝑋 )
11 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
12 1 2 4 5 rprmcl ( 𝜑𝑋𝐵 )
13 1 2 4 7 rprmcl ( 𝜑𝑌𝐵 )
14 1 11 3 12 13 9 8 4 dvdsruasso ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ ∃ 𝑡𝑈 ( 𝑡 · 𝑋 ) = 𝑌 ) )
15 6 10 14 mpbi2and ( 𝜑 → ∃ 𝑡𝑈 ( 𝑡 · 𝑋 ) = 𝑌 )