| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rprmasso.b |
|- B = ( Base ` R ) |
| 2 |
|
rprmasso.p |
|- P = ( RPrime ` R ) |
| 3 |
|
rprmasso.d |
|- .|| = ( ||r ` R ) |
| 4 |
|
rprmasso.r |
|- ( ph -> R e. IDomn ) |
| 5 |
|
rprmasso.x |
|- ( ph -> X e. P ) |
| 6 |
|
rprmasso.1 |
|- ( ph -> X .|| Y ) |
| 7 |
|
rprmasso2.y |
|- ( ph -> Y e. P ) |
| 8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 9 |
4
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> R e. IDomn ) |
| 10 |
7
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> Y e. P ) |
| 11 |
|
simplr |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> t e. B ) |
| 12 |
1 2 4 5
|
rprmcl |
|- ( ph -> X e. B ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> X e. B ) |
| 14 |
4
|
idomringd |
|- ( ph -> R e. Ring ) |
| 15 |
1 2 4 7
|
rprmcl |
|- ( ph -> Y e. B ) |
| 16 |
1 3
|
dvdsrid |
|- ( ( R e. Ring /\ Y e. B ) -> Y .|| Y ) |
| 17 |
14 15 16
|
syl2anc |
|- ( ph -> Y .|| Y ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> Y .|| Y ) |
| 19 |
|
simpr |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> ( t ( .r ` R ) X ) = Y ) |
| 20 |
18 19
|
breqtrrd |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> Y .|| ( t ( .r ` R ) X ) ) |
| 21 |
1 2 3 8 9 10 11 13 20
|
rprmdvds |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> ( Y .|| t \/ Y .|| X ) ) |
| 22 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) -> X e. B ) |
| 23 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 24 |
11
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> t e. B ) |
| 25 |
|
simpr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ t = ( 0g ` R ) ) -> t = ( 0g ` R ) ) |
| 26 |
25
|
oveq1d |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ t = ( 0g ` R ) ) -> ( t ( .r ` R ) X ) = ( ( 0g ` R ) ( .r ` R ) X ) ) |
| 27 |
|
simplr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ t = ( 0g ` R ) ) -> ( t ( .r ` R ) X ) = Y ) |
| 28 |
1 8 23 14 12
|
ringlzd |
|- ( ph -> ( ( 0g ` R ) ( .r ` R ) X ) = ( 0g ` R ) ) |
| 29 |
28
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ t = ( 0g ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) X ) = ( 0g ` R ) ) |
| 30 |
26 27 29
|
3eqtr3d |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ t = ( 0g ` R ) ) -> Y = ( 0g ` R ) ) |
| 31 |
2 23 4 7
|
rprmnz |
|- ( ph -> Y =/= ( 0g ` R ) ) |
| 32 |
31
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ t = ( 0g ` R ) ) -> Y =/= ( 0g ` R ) ) |
| 33 |
32
|
neneqd |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ t = ( 0g ` R ) ) -> -. Y = ( 0g ` R ) ) |
| 34 |
30 33
|
pm2.65da |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> -. t = ( 0g ` R ) ) |
| 35 |
34
|
neqned |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> t =/= ( 0g ` R ) ) |
| 36 |
35
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> t =/= ( 0g ` R ) ) |
| 37 |
24 36
|
eldifsnd |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> t e. ( B \ { ( 0g ` R ) } ) ) |
| 38 |
14
|
ad5antr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> R e. Ring ) |
| 39 |
|
simplr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> u e. B ) |
| 40 |
13
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> X e. B ) |
| 41 |
1 8 38 39 40
|
ringcld |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( u ( .r ` R ) X ) e. B ) |
| 42 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 43 |
1 42
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 44 |
14 43
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
| 45 |
44
|
ad5antr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( 1r ` R ) e. B ) |
| 46 |
4
|
idomdomd |
|- ( ph -> R e. Domn ) |
| 47 |
46
|
ad5antr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> R e. Domn ) |
| 48 |
19
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( t ( .r ` R ) X ) = Y ) |
| 49 |
48
|
oveq2d |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( u ( .r ` R ) ( t ( .r ` R ) X ) ) = ( u ( .r ` R ) Y ) ) |
| 50 |
|
simpr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( u ( .r ` R ) Y ) = t ) |
| 51 |
49 50
|
eqtrd |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( u ( .r ` R ) ( t ( .r ` R ) X ) ) = t ) |
| 52 |
4
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 53 |
52
|
ad5antr |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> R e. CRing ) |
| 54 |
1 8 53 24 39 40
|
crng12d |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( t ( .r ` R ) ( u ( .r ` R ) X ) ) = ( u ( .r ` R ) ( t ( .r ` R ) X ) ) ) |
| 55 |
1 8 42 38 24
|
ringridmd |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( t ( .r ` R ) ( 1r ` R ) ) = t ) |
| 56 |
51 54 55
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( t ( .r ` R ) ( u ( .r ` R ) X ) ) = ( t ( .r ` R ) ( 1r ` R ) ) ) |
| 57 |
1 23 8 37 41 45 47 56
|
domnlcan |
|- ( ( ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) /\ u e. B ) /\ ( u ( .r ` R ) Y ) = t ) -> ( u ( .r ` R ) X ) = ( 1r ` R ) ) |
| 58 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) -> Y e. B ) |
| 59 |
|
simpr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) -> Y .|| t ) |
| 60 |
1 3 8
|
dvdsr2 |
|- ( Y e. B -> ( Y .|| t <-> E. u e. B ( u ( .r ` R ) Y ) = t ) ) |
| 61 |
60
|
biimpa |
|- ( ( Y e. B /\ Y .|| t ) -> E. u e. B ( u ( .r ` R ) Y ) = t ) |
| 62 |
58 59 61
|
syl2anc |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) -> E. u e. B ( u ( .r ` R ) Y ) = t ) |
| 63 |
57 62
|
reximddv3 |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) -> E. u e. B ( u ( .r ` R ) X ) = ( 1r ` R ) ) |
| 64 |
1 3 8
|
dvdsr2 |
|- ( X e. B -> ( X .|| ( 1r ` R ) <-> E. u e. B ( u ( .r ` R ) X ) = ( 1r ` R ) ) ) |
| 65 |
64
|
biimpar |
|- ( ( X e. B /\ E. u e. B ( u ( .r ` R ) X ) = ( 1r ` R ) ) -> X .|| ( 1r ` R ) ) |
| 66 |
22 63 65
|
syl2anc |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) -> X .|| ( 1r ` R ) ) |
| 67 |
42 3 2 52 5
|
rprmndvdsr1 |
|- ( ph -> -. X .|| ( 1r ` R ) ) |
| 68 |
67
|
ad3antrrr |
|- ( ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) /\ Y .|| t ) -> -. X .|| ( 1r ` R ) ) |
| 69 |
66 68
|
pm2.65da |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> -. Y .|| t ) |
| 70 |
21 69
|
orcnd |
|- ( ( ( ph /\ t e. B ) /\ ( t ( .r ` R ) X ) = Y ) -> Y .|| X ) |
| 71 |
1 3 8
|
dvdsr |
|- ( X .|| Y <-> ( X e. B /\ E. t e. B ( t ( .r ` R ) X ) = Y ) ) |
| 72 |
6 71
|
sylib |
|- ( ph -> ( X e. B /\ E. t e. B ( t ( .r ` R ) X ) = Y ) ) |
| 73 |
72
|
simprd |
|- ( ph -> E. t e. B ( t ( .r ` R ) X ) = Y ) |
| 74 |
70 73
|
r19.29a |
|- ( ph -> Y .|| X ) |