Step |
Hyp |
Ref |
Expression |
1 |
|
wrdpmtrlast.1 |
|
2 |
|
wrdpmtrlast.2 |
|
3 |
|
wrdpmtrlast.3 |
|
4 |
|
wrdpmtrlast.4 |
|
5 |
1 2
|
fzo0pmtrlast |
|
6 |
|
simplr |
|
7 |
|
f1of |
|
8 |
1
|
feq2i |
|
9 |
7 8
|
sylib |
|
10 |
6 9
|
syl |
|
11 |
|
iswrdi |
|
12 |
10 11
|
syl |
|
13 |
|
eqidd |
|
14 |
3
|
ad2antrr |
|
15 |
13 14
|
wrdfd |
|
16 |
1
|
feq2i |
|
17 |
15 16
|
sylibr |
|
18 |
|
lenco |
|
19 |
12 17 18
|
syl2anc |
|
20 |
10
|
ffund |
|
21 |
|
hashfundm |
|
22 |
12 20 21
|
syl2anc |
|
23 |
10
|
fdmd |
|
24 |
23
|
fveq2d |
|
25 |
2 1
|
eleqtrdi |
|
26 |
25
|
ad2antrr |
|
27 |
|
elfzo0 |
|
28 |
27
|
simp2bi |
|
29 |
26 28
|
syl |
|
30 |
29
|
nnnn0d |
|
31 |
|
hashfzo0 |
|
32 |
30 31
|
syl |
|
33 |
22 24 32
|
3eqtrd |
|
34 |
19 33
|
eqtr2d |
|
35 |
34
|
oveq1d |
|
36 |
35
|
oveq2d |
|
37 |
4 36
|
eqtrid |
|
38 |
26
|
ne0d |
|
39 |
|
f0dom0 |
|
40 |
39
|
necon3bid |
|
41 |
40
|
biimpa |
|
42 |
10 38 41
|
syl2anc |
|
43 |
|
lswco |
|
44 |
12 42 17 43
|
syl3anc |
|
45 |
|
lsw |
|
46 |
12 45
|
syl |
|
47 |
33
|
oveq1d |
|
48 |
47
|
fveq2d |
|
49 |
|
simpr |
|
50 |
46 48 49
|
3eqtrd |
|
51 |
50
|
fveq2d |
|
52 |
44 51
|
eqtr2d |
|
53 |
52
|
s1eqd |
|
54 |
37 53
|
oveq12d |
|
55 |
1 6 14
|
wrdpmcl |
|
56 |
|
fzo0end |
|
57 |
29 56
|
syl |
|
58 |
57 1
|
eleqtrrdi |
|
59 |
17
|
fdmd |
|
60 |
58 59
|
eleqtrrd |
|
61 |
|
dff1o5 |
|
62 |
61
|
simprbi |
|
63 |
6 62
|
syl |
|
64 |
58 63
|
eleqtrrd |
|
65 |
60 64
|
elind |
|
66 |
65
|
ne0d |
|
67 |
|
coeq0 |
|
68 |
67
|
necon3bii |
|
69 |
66 68
|
sylibr |
|
70 |
|
pfxlswccat |
|
71 |
55 69 70
|
syl2anc |
|
72 |
54 71
|
eqtr2d |
|
73 |
6 72
|
jca |
|
74 |
73
|
expl |
|
75 |
74
|
eximdv |
|
76 |
5 75
|
mpd |
|