Metamath Proof Explorer


Theorem wrdpmtrlast

Description: Reorder a word, so that the symbol given at index I is at the end. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses wrdpmtrlast.1 J = 0 ..^ W
wrdpmtrlast.2 φ I J
wrdpmtrlast.3 φ W Word S
wrdpmtrlast.4 U = W s prefix W 1
Assertion wrdpmtrlast φ s s : J 1-1 onto J W s = U ++ ⟨“ W I ”⟩

Proof

Step Hyp Ref Expression
1 wrdpmtrlast.1 J = 0 ..^ W
2 wrdpmtrlast.2 φ I J
3 wrdpmtrlast.3 φ W Word S
4 wrdpmtrlast.4 U = W s prefix W 1
5 1 2 fzo0pmtrlast φ s s : J 1-1 onto J s W 1 = I
6 simplr φ s : J 1-1 onto J s W 1 = I s : J 1-1 onto J
7 f1of s : J 1-1 onto J s : J J
8 1 feq2i s : J J s : 0 ..^ W J
9 7 8 sylib s : J 1-1 onto J s : 0 ..^ W J
10 6 9 syl φ s : J 1-1 onto J s W 1 = I s : 0 ..^ W J
11 iswrdi s : 0 ..^ W J s Word J
12 10 11 syl φ s : J 1-1 onto J s W 1 = I s Word J
13 eqidd φ s : J 1-1 onto J s W 1 = I W = W
14 3 ad2antrr φ s : J 1-1 onto J s W 1 = I W Word S
15 13 14 wrdfd φ s : J 1-1 onto J s W 1 = I W : 0 ..^ W S
16 1 feq2i W : J S W : 0 ..^ W S
17 15 16 sylibr φ s : J 1-1 onto J s W 1 = I W : J S
18 lenco s Word J W : J S W s = s
19 12 17 18 syl2anc φ s : J 1-1 onto J s W 1 = I W s = s
20 10 ffund φ s : J 1-1 onto J s W 1 = I Fun s
21 hashfundm s Word J Fun s s = dom s
22 12 20 21 syl2anc φ s : J 1-1 onto J s W 1 = I s = dom s
23 10 fdmd φ s : J 1-1 onto J s W 1 = I dom s = 0 ..^ W
24 23 fveq2d φ s : J 1-1 onto J s W 1 = I dom s = 0 ..^ W
25 2 1 eleqtrdi φ I 0 ..^ W
26 25 ad2antrr φ s : J 1-1 onto J s W 1 = I I 0 ..^ W
27 elfzo0 I 0 ..^ W I 0 W I < W
28 27 simp2bi I 0 ..^ W W
29 26 28 syl φ s : J 1-1 onto J s W 1 = I W
30 29 nnnn0d φ s : J 1-1 onto J s W 1 = I W 0
31 hashfzo0 W 0 0 ..^ W = W
32 30 31 syl φ s : J 1-1 onto J s W 1 = I 0 ..^ W = W
33 22 24 32 3eqtrd φ s : J 1-1 onto J s W 1 = I s = W
34 19 33 eqtr2d φ s : J 1-1 onto J s W 1 = I W = W s
35 34 oveq1d φ s : J 1-1 onto J s W 1 = I W 1 = W s 1
36 35 oveq2d φ s : J 1-1 onto J s W 1 = I W s prefix W 1 = W s prefix W s 1
37 4 36 eqtrid φ s : J 1-1 onto J s W 1 = I U = W s prefix W s 1
38 26 ne0d φ s : J 1-1 onto J s W 1 = I 0 ..^ W
39 f0dom0 s : 0 ..^ W J 0 ..^ W = s =
40 39 necon3bid s : 0 ..^ W J 0 ..^ W s
41 40 biimpa s : 0 ..^ W J 0 ..^ W s
42 10 38 41 syl2anc φ s : J 1-1 onto J s W 1 = I s
43 lswco s Word J s W : J S lastS W s = W lastS s
44 12 42 17 43 syl3anc φ s : J 1-1 onto J s W 1 = I lastS W s = W lastS s
45 lsw s Word J lastS s = s s 1
46 12 45 syl φ s : J 1-1 onto J s W 1 = I lastS s = s s 1
47 33 oveq1d φ s : J 1-1 onto J s W 1 = I s 1 = W 1
48 47 fveq2d φ s : J 1-1 onto J s W 1 = I s s 1 = s W 1
49 simpr φ s : J 1-1 onto J s W 1 = I s W 1 = I
50 46 48 49 3eqtrd φ s : J 1-1 onto J s W 1 = I lastS s = I
51 50 fveq2d φ s : J 1-1 onto J s W 1 = I W lastS s = W I
52 44 51 eqtr2d φ s : J 1-1 onto J s W 1 = I W I = lastS W s
53 52 s1eqd φ s : J 1-1 onto J s W 1 = I ⟨“ W I ”⟩ = ⟨“ lastS W s ”⟩
54 37 53 oveq12d φ s : J 1-1 onto J s W 1 = I U ++ ⟨“ W I ”⟩ = W s prefix W s 1 ++ ⟨“ lastS W s ”⟩
55 1 6 14 wrdpmcl φ s : J 1-1 onto J s W 1 = I W s Word S
56 fzo0end W W 1 0 ..^ W
57 29 56 syl φ s : J 1-1 onto J s W 1 = I W 1 0 ..^ W
58 57 1 eleqtrrdi φ s : J 1-1 onto J s W 1 = I W 1 J
59 17 fdmd φ s : J 1-1 onto J s W 1 = I dom W = J
60 58 59 eleqtrrd φ s : J 1-1 onto J s W 1 = I W 1 dom W
61 dff1o5 s : J 1-1 onto J s : J 1-1 J ran s = J
62 61 simprbi s : J 1-1 onto J ran s = J
63 6 62 syl φ s : J 1-1 onto J s W 1 = I ran s = J
64 58 63 eleqtrrd φ s : J 1-1 onto J s W 1 = I W 1 ran s
65 60 64 elind φ s : J 1-1 onto J s W 1 = I W 1 dom W ran s
66 65 ne0d φ s : J 1-1 onto J s W 1 = I dom W ran s
67 coeq0 W s = dom W ran s =
68 67 necon3bii W s dom W ran s
69 66 68 sylibr φ s : J 1-1 onto J s W 1 = I W s
70 pfxlswccat W s Word S W s W s prefix W s 1 ++ ⟨“ lastS W s ”⟩ = W s
71 55 69 70 syl2anc φ s : J 1-1 onto J s W 1 = I W s prefix W s 1 ++ ⟨“ lastS W s ”⟩ = W s
72 54 71 eqtr2d φ s : J 1-1 onto J s W 1 = I W s = U ++ ⟨“ W I ”⟩
73 6 72 jca φ s : J 1-1 onto J s W 1 = I s : J 1-1 onto J W s = U ++ ⟨“ W I ”⟩
74 73 expl φ s : J 1-1 onto J s W 1 = I s : J 1-1 onto J W s = U ++ ⟨“ W I ”⟩
75 74 eximdv φ s s : J 1-1 onto J s W 1 = I s s : J 1-1 onto J W s = U ++ ⟨“ W I ”⟩
76 5 75 mpd φ s s : J 1-1 onto J W s = U ++ ⟨“ W I ”⟩