Metamath Proof Explorer


Theorem fzo0pmtrlast

Description: Reorder a half-open integer range based at 0, so that the given index I is at the end. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses fzo0pmtrlast.j J = 0 ..^ N
fzo0pmtrlast.i φ I J
Assertion fzo0pmtrlast φ s s : J 1-1 onto J s N 1 = I

Proof

Step Hyp Ref Expression
1 fzo0pmtrlast.j J = 0 ..^ N
2 fzo0pmtrlast.i φ I J
3 1 ovexi J V
4 3 a1i φ I = N 1 J V
5 4 resiexd φ I = N 1 I J V
6 simpr φ I = N 1 I = N 1
7 2 adantr φ I = N 1 I J
8 6 7 eqeltrrd φ I = N 1 N 1 J
9 fvresi N 1 J I J N 1 = N 1
10 8 9 syl φ I = N 1 I J N 1 = N 1
11 10 6 eqtr4d φ I = N 1 I J N 1 = I
12 f1oi I J : J 1-1 onto J
13 11 12 jctil φ I = N 1 I J : J 1-1 onto J I J N 1 = I
14 f1oeq1 s = I J s : J 1-1 onto J I J : J 1-1 onto J
15 fveq1 s = I J s N 1 = I J N 1
16 15 eqeq1d s = I J s N 1 = I I J N 1 = I
17 14 16 anbi12d s = I J s : J 1-1 onto J s N 1 = I I J : J 1-1 onto J I J N 1 = I
18 5 13 17 spcedv φ I = N 1 s s : J 1-1 onto J s N 1 = I
19 fvexd φ I N 1 pmTrsp J I N 1 V
20 3 a1i φ I N 1 J V
21 2 adantr φ I N 1 I J
22 2 1 eleqtrdi φ I 0 ..^ N
23 elfzo0 I 0 ..^ N I 0 N I < N
24 23 simp2bi I 0 ..^ N N
25 fzo0end N N 1 0 ..^ N
26 22 24 25 3syl φ N 1 0 ..^ N
27 26 1 eleqtrrdi φ N 1 J
28 27 adantr φ I N 1 N 1 J
29 21 28 prssd φ I N 1 I N 1 J
30 simpr φ I N 1 I N 1
31 enpr2 I J N 1 J I N 1 I N 1 2 𝑜
32 21 28 30 31 syl3anc φ I N 1 I N 1 2 𝑜
33 eqid pmTrsp J = pmTrsp J
34 eqid ran pmTrsp J = ran pmTrsp J
35 33 34 pmtrrn J V I N 1 J I N 1 2 𝑜 pmTrsp J I N 1 ran pmTrsp J
36 20 29 32 35 syl3anc φ I N 1 pmTrsp J I N 1 ran pmTrsp J
37 33 34 pmtrff1o pmTrsp J I N 1 ran pmTrsp J pmTrsp J I N 1 : J 1-1 onto J
38 36 37 syl φ I N 1 pmTrsp J I N 1 : J 1-1 onto J
39 33 pmtrprfv2 J V I J N 1 J I N 1 pmTrsp J I N 1 N 1 = I
40 20 21 28 30 39 syl13anc φ I N 1 pmTrsp J I N 1 N 1 = I
41 38 40 jca φ I N 1 pmTrsp J I N 1 : J 1-1 onto J pmTrsp J I N 1 N 1 = I
42 f1oeq1 s = pmTrsp J I N 1 s : J 1-1 onto J pmTrsp J I N 1 : J 1-1 onto J
43 fveq1 s = pmTrsp J I N 1 s N 1 = pmTrsp J I N 1 N 1
44 43 eqeq1d s = pmTrsp J I N 1 s N 1 = I pmTrsp J I N 1 N 1 = I
45 42 44 anbi12d s = pmTrsp J I N 1 s : J 1-1 onto J s N 1 = I pmTrsp J I N 1 : J 1-1 onto J pmTrsp J I N 1 N 1 = I
46 19 41 45 spcedv φ I N 1 s s : J 1-1 onto J s N 1 = I
47 18 46 pm2.61dane φ s s : J 1-1 onto J s N 1 = I