Step |
Hyp |
Ref |
Expression |
1 |
|
fzo0pmtrlast.j |
|
2 |
|
fzo0pmtrlast.i |
|
3 |
1
|
ovexi |
|
4 |
3
|
a1i |
|
5 |
4
|
resiexd |
|
6 |
|
simpr |
|
7 |
2
|
adantr |
|
8 |
6 7
|
eqeltrrd |
|
9 |
|
fvresi |
|
10 |
8 9
|
syl |
|
11 |
10 6
|
eqtr4d |
|
12 |
|
f1oi |
|
13 |
11 12
|
jctil |
|
14 |
|
f1oeq1 |
|
15 |
|
fveq1 |
|
16 |
15
|
eqeq1d |
|
17 |
14 16
|
anbi12d |
|
18 |
5 13 17
|
spcedv |
|
19 |
|
fvexd |
|
20 |
3
|
a1i |
|
21 |
2
|
adantr |
|
22 |
2 1
|
eleqtrdi |
|
23 |
|
elfzo0 |
|
24 |
23
|
simp2bi |
|
25 |
|
fzo0end |
|
26 |
22 24 25
|
3syl |
|
27 |
26 1
|
eleqtrrdi |
|
28 |
27
|
adantr |
|
29 |
21 28
|
prssd |
|
30 |
|
simpr |
|
31 |
|
enpr2 |
|
32 |
21 28 30 31
|
syl3anc |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33 34
|
pmtrrn |
|
36 |
20 29 32 35
|
syl3anc |
|
37 |
33 34
|
pmtrff1o |
|
38 |
36 37
|
syl |
|
39 |
33
|
pmtrprfv2 |
|
40 |
20 21 28 30 39
|
syl13anc |
|
41 |
38 40
|
jca |
|
42 |
|
f1oeq1 |
|
43 |
|
fveq1 |
|
44 |
43
|
eqeq1d |
|
45 |
42 44
|
anbi12d |
|
46 |
19 41 45
|
spcedv |
|
47 |
18 46
|
pm2.61dane |
|