Metamath Proof Explorer


Theorem pmtrprfv2

Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypothesis pmtrprfv2.t T=pmTrspD
Assertion pmtrprfv2 DVXDYDXYTXYY=X

Proof

Step Hyp Ref Expression
1 pmtrprfv2.t T=pmTrspD
2 prcom YX=XY
3 2 fveq2i TYX=TXY
4 3 fveq1i TYXY=TXYY
5 ancom XDYDYDXD
6 necom XYYX
7 5 6 anbi12i XDYDXYYDXDYX
8 df-3an XDYDXYXDYDXY
9 df-3an YDXDYXYDXDYX
10 7 8 9 3bitr4i XDYDXYYDXDYX
11 1 pmtrprfv DVYDXDYXTYXY=X
12 10 11 sylan2b DVXDYDXYTYXY=X
13 4 12 eqtr3id DVXDYDXYTXYY=X