Metamath Proof Explorer


Theorem pmtrprfv

Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T=pmTrspD
Assertion pmtrprfv DVXDYDXYTXYX=Y

Proof

Step Hyp Ref Expression
1 pmtrfval.t T=pmTrspD
2 simpl DVXDYDXYDV
3 simpr1 DVXDYDXYXD
4 simpr2 DVXDYDXYYD
5 3 4 prssd DVXDYDXYXYD
6 enpr2 XDYDXYXY2𝑜
7 6 adantl DVXDYDXYXY2𝑜
8 1 pmtrfv DVXYDXY2𝑜XDTXYX=ifXXYXYXX
9 2 5 7 3 8 syl31anc DVXDYDXYTXYX=ifXXYXYXX
10 prid1g XDXXY
11 3 10 syl DVXDYDXYXXY
12 11 iftrued DVXDYDXYifXXYXYXX=XYX
13 difprsnss XYXY
14 13 a1i DVXDYDXYXYXY
15 prid2g YDYXY
16 4 15 syl DVXDYDXYYXY
17 simpr3 DVXDYDXYXY
18 17 necomd DVXDYDXYYX
19 eldifsn YXYXYXYYX
20 16 18 19 sylanbrc DVXDYDXYYXYX
21 20 snssd DVXDYDXYYXYX
22 14 21 eqssd DVXDYDXYXYX=Y
23 22 unieqd DVXDYDXYXYX=Y
24 unisng YDY=Y
25 4 24 syl DVXDYDXYY=Y
26 23 25 eqtrd DVXDYDXYXYX=Y
27 12 26 eqtrd DVXDYDXYifXXYXYXX=Y
28 9 27 eqtrd DVXDYDXYTXYX=Y