Step |
Hyp |
Ref |
Expression |
1 |
|
fzo0pmtrlast.j |
|- J = ( 0 ..^ N ) |
2 |
|
fzo0pmtrlast.i |
|- ( ph -> I e. J ) |
3 |
1
|
ovexi |
|- J e. _V |
4 |
3
|
a1i |
|- ( ( ph /\ I = ( N - 1 ) ) -> J e. _V ) |
5 |
4
|
resiexd |
|- ( ( ph /\ I = ( N - 1 ) ) -> ( _I |` J ) e. _V ) |
6 |
|
simpr |
|- ( ( ph /\ I = ( N - 1 ) ) -> I = ( N - 1 ) ) |
7 |
2
|
adantr |
|- ( ( ph /\ I = ( N - 1 ) ) -> I e. J ) |
8 |
6 7
|
eqeltrrd |
|- ( ( ph /\ I = ( N - 1 ) ) -> ( N - 1 ) e. J ) |
9 |
|
fvresi |
|- ( ( N - 1 ) e. J -> ( ( _I |` J ) ` ( N - 1 ) ) = ( N - 1 ) ) |
10 |
8 9
|
syl |
|- ( ( ph /\ I = ( N - 1 ) ) -> ( ( _I |` J ) ` ( N - 1 ) ) = ( N - 1 ) ) |
11 |
10 6
|
eqtr4d |
|- ( ( ph /\ I = ( N - 1 ) ) -> ( ( _I |` J ) ` ( N - 1 ) ) = I ) |
12 |
|
f1oi |
|- ( _I |` J ) : J -1-1-onto-> J |
13 |
11 12
|
jctil |
|- ( ( ph /\ I = ( N - 1 ) ) -> ( ( _I |` J ) : J -1-1-onto-> J /\ ( ( _I |` J ) ` ( N - 1 ) ) = I ) ) |
14 |
|
f1oeq1 |
|- ( s = ( _I |` J ) -> ( s : J -1-1-onto-> J <-> ( _I |` J ) : J -1-1-onto-> J ) ) |
15 |
|
fveq1 |
|- ( s = ( _I |` J ) -> ( s ` ( N - 1 ) ) = ( ( _I |` J ) ` ( N - 1 ) ) ) |
16 |
15
|
eqeq1d |
|- ( s = ( _I |` J ) -> ( ( s ` ( N - 1 ) ) = I <-> ( ( _I |` J ) ` ( N - 1 ) ) = I ) ) |
17 |
14 16
|
anbi12d |
|- ( s = ( _I |` J ) -> ( ( s : J -1-1-onto-> J /\ ( s ` ( N - 1 ) ) = I ) <-> ( ( _I |` J ) : J -1-1-onto-> J /\ ( ( _I |` J ) ` ( N - 1 ) ) = I ) ) ) |
18 |
5 13 17
|
spcedv |
|- ( ( ph /\ I = ( N - 1 ) ) -> E. s ( s : J -1-1-onto-> J /\ ( s ` ( N - 1 ) ) = I ) ) |
19 |
|
fvexd |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) e. _V ) |
20 |
3
|
a1i |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> J e. _V ) |
21 |
2
|
adantr |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> I e. J ) |
22 |
2 1
|
eleqtrdi |
|- ( ph -> I e. ( 0 ..^ N ) ) |
23 |
|
elfzo0 |
|- ( I e. ( 0 ..^ N ) <-> ( I e. NN0 /\ N e. NN /\ I < N ) ) |
24 |
23
|
simp2bi |
|- ( I e. ( 0 ..^ N ) -> N e. NN ) |
25 |
|
fzo0end |
|- ( N e. NN -> ( N - 1 ) e. ( 0 ..^ N ) ) |
26 |
22 24 25
|
3syl |
|- ( ph -> ( N - 1 ) e. ( 0 ..^ N ) ) |
27 |
26 1
|
eleqtrrdi |
|- ( ph -> ( N - 1 ) e. J ) |
28 |
27
|
adantr |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> ( N - 1 ) e. J ) |
29 |
21 28
|
prssd |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> { I , ( N - 1 ) } C_ J ) |
30 |
|
simpr |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> I =/= ( N - 1 ) ) |
31 |
|
enpr2 |
|- ( ( I e. J /\ ( N - 1 ) e. J /\ I =/= ( N - 1 ) ) -> { I , ( N - 1 ) } ~~ 2o ) |
32 |
21 28 30 31
|
syl3anc |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> { I , ( N - 1 ) } ~~ 2o ) |
33 |
|
eqid |
|- ( pmTrsp ` J ) = ( pmTrsp ` J ) |
34 |
|
eqid |
|- ran ( pmTrsp ` J ) = ran ( pmTrsp ` J ) |
35 |
33 34
|
pmtrrn |
|- ( ( J e. _V /\ { I , ( N - 1 ) } C_ J /\ { I , ( N - 1 ) } ~~ 2o ) -> ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) e. ran ( pmTrsp ` J ) ) |
36 |
20 29 32 35
|
syl3anc |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) e. ran ( pmTrsp ` J ) ) |
37 |
33 34
|
pmtrff1o |
|- ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) e. ran ( pmTrsp ` J ) -> ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) : J -1-1-onto-> J ) |
38 |
36 37
|
syl |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) : J -1-1-onto-> J ) |
39 |
33
|
pmtrprfv2 |
|- ( ( J e. _V /\ ( I e. J /\ ( N - 1 ) e. J /\ I =/= ( N - 1 ) ) ) -> ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) ` ( N - 1 ) ) = I ) |
40 |
20 21 28 30 39
|
syl13anc |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) ` ( N - 1 ) ) = I ) |
41 |
38 40
|
jca |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) : J -1-1-onto-> J /\ ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) ` ( N - 1 ) ) = I ) ) |
42 |
|
f1oeq1 |
|- ( s = ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) -> ( s : J -1-1-onto-> J <-> ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) : J -1-1-onto-> J ) ) |
43 |
|
fveq1 |
|- ( s = ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) -> ( s ` ( N - 1 ) ) = ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) ` ( N - 1 ) ) ) |
44 |
43
|
eqeq1d |
|- ( s = ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) -> ( ( s ` ( N - 1 ) ) = I <-> ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) ` ( N - 1 ) ) = I ) ) |
45 |
42 44
|
anbi12d |
|- ( s = ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) -> ( ( s : J -1-1-onto-> J /\ ( s ` ( N - 1 ) ) = I ) <-> ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) : J -1-1-onto-> J /\ ( ( ( pmTrsp ` J ) ` { I , ( N - 1 ) } ) ` ( N - 1 ) ) = I ) ) ) |
46 |
19 41 45
|
spcedv |
|- ( ( ph /\ I =/= ( N - 1 ) ) -> E. s ( s : J -1-1-onto-> J /\ ( s ` ( N - 1 ) ) = I ) ) |
47 |
18 46
|
pm2.61dane |
|- ( ph -> E. s ( s : J -1-1-onto-> J /\ ( s ` ( N - 1 ) ) = I ) ) |