Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
1arithufd.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
1arithufd.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
4 |
|
1arithufd.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
5 |
|
1arithufd.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
6 |
|
1arithufd.r |
⊢ ( 𝜑 → 𝑅 ∈ UFD ) |
7 |
|
1arithufdlem.2 |
⊢ ( 𝜑 → ¬ 𝑅 ∈ DivRing ) |
8 |
|
1arithufdlem.s |
⊢ 𝑆 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } |
9 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑝 → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑝 = ( 𝑀 Σg 𝑓 ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑥 = 𝑝 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 𝑝 = ( 𝑀 Σg 𝑓 ) ) ) |
11 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) → 𝑅 ∈ UFD ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑅 ∈ UFD ) |
13 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ 𝑃 ) |
14 |
1 4 12 13
|
rprmcl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ 𝐵 ) |
15 |
|
oveq2 |
⊢ ( 𝑓 = 〈“ 𝑝 ”〉 → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg 〈“ 𝑝 ”〉 ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑓 = 〈“ 𝑝 ”〉 → ( 𝑝 = ( 𝑀 Σg 𝑓 ) ↔ 𝑝 = ( 𝑀 Σg 〈“ 𝑝 ”〉 ) ) ) |
17 |
13
|
s1cld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 〈“ 𝑝 ”〉 ∈ Word 𝑃 ) |
18 |
5 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
19 |
18
|
gsumws1 |
⊢ ( 𝑝 ∈ 𝐵 → ( 𝑀 Σg 〈“ 𝑝 ”〉 ) = 𝑝 ) |
20 |
14 19
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → ( 𝑀 Σg 〈“ 𝑝 ”〉 ) = 𝑝 ) |
21 |
20
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 = ( 𝑀 Σg 〈“ 𝑝 ”〉 ) ) |
22 |
16 17 21
|
rspcedvdw |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → ∃ 𝑓 ∈ Word 𝑃 𝑝 = ( 𝑀 Σg 𝑓 ) ) |
23 |
10 14 22
|
elrabd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) |
24 |
23 8
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑝 ∈ 𝑆 ) |
25 |
24
|
ne0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑝 ∈ 𝑚 ) → 𝑆 ≠ ∅ ) |
26 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
27 |
6
|
ufdidom |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
28 |
27
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) → 𝑅 ∈ CRing ) |
30 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) → 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
31 |
|
eqid |
⊢ ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) |
32 |
31
|
mxidlprm |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
33 |
29 30 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) → 𝑚 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) → 𝑚 ≠ { 0 } ) |
35 |
26 4 2 11 33 34
|
ufdprmidl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) → ∃ 𝑝 ∈ 𝑃 𝑝 ∈ 𝑚 ) |
36 |
25 35
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑚 ≠ { 0 } ) → 𝑆 ≠ ∅ ) |
37 |
27
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
38 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
40 |
2 39 7
|
krullndrng |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑚 ≠ { 0 } ) |
41 |
36 40
|
r19.29a |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |