| Step |
Hyp |
Ref |
Expression |
| 1 |
|
krullndrng.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 2 |
|
krullndrng.2 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 3 |
|
krullndrng.3 |
⊢ ( 𝜑 → ¬ 𝑅 ∈ DivRing ) |
| 4 |
|
krull |
⊢ ( 𝑅 ∈ NzRing → ∃ 𝑛 𝑛 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → ∃ 𝑛 𝑛 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑛 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( MaxIdeal ‘ 𝑅 ) = ( MaxIdeal ‘ 𝑅 ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( MaxIdeal ‘ 𝑅 ) = { { 0 } } ) → 𝑅 ∈ NzRing ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( MaxIdeal ‘ 𝑅 ) = { { 0 } } ) → ( MaxIdeal ‘ 𝑅 ) = { { 0 } } ) |
| 11 |
7 1 8 9 10
|
drngmxidlr |
⊢ ( ( 𝜑 ∧ ( MaxIdeal ‘ 𝑅 ) = { { 0 } } ) → 𝑅 ∈ DivRing ) |
| 12 |
3 11
|
mtand |
⊢ ( 𝜑 → ¬ ( MaxIdeal ‘ 𝑅 ) = { { 0 } } ) |
| 13 |
12
|
neqned |
⊢ ( 𝜑 → ( MaxIdeal ‘ 𝑅 ) ≠ { { 0 } } ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( MaxIdeal ‘ 𝑅 ) ≠ { { 0 } } ) |
| 15 |
|
n0nsnel |
⊢ ( ( 𝑛 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ ( MaxIdeal ‘ 𝑅 ) ≠ { { 0 } } ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑚 ≠ { 0 } ) |
| 16 |
6 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑚 ≠ { 0 } ) |
| 17 |
5 16
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑚 ≠ { 0 } ) |