Metamath Proof Explorer


Theorem drngmxidlr

Description: If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses drngmxidlr.b 𝐵 = ( Base ‘ 𝑅 )
drngmxidlr.z 0 = ( 0g𝑅 )
drngmxidlr.u 𝑀 = ( MaxIdeal ‘ 𝑅 )
drngmxidlr.r ( 𝜑𝑅 ∈ NzRing )
drngmxidlr.2 ( 𝜑𝑀 = { { 0 } } )
Assertion drngmxidlr ( 𝜑𝑅 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 drngmxidlr.b 𝐵 = ( Base ‘ 𝑅 )
2 drngmxidlr.z 0 = ( 0g𝑅 )
3 drngmxidlr.u 𝑀 = ( MaxIdeal ‘ 𝑅 )
4 drngmxidlr.r ( 𝜑𝑅 ∈ NzRing )
5 drngmxidlr.2 ( 𝜑𝑀 = { { 0 } } )
6 simpr ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑖𝑚 )
7 simplr ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) )
8 7 3 eleqtrrdi ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑚𝑀 )
9 5 ad4antr ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑀 = { { 0 } } )
10 8 9 eleqtrd ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑚 ∈ { { 0 } } )
11 elsni ( 𝑚 ∈ { { 0 } } → 𝑚 = { 0 } )
12 10 11 syl ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑚 = { 0 } )
13 6 12 sseqtrd ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑖 ⊆ { 0 } )
14 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
15 4 14 syl ( 𝜑𝑅 ∈ Ring )
16 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
17 16 2 lidl0cl ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0𝑖 )
18 15 17 sylan ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0𝑖 )
19 18 snssd ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → { 0 } ⊆ 𝑖 )
20 19 ad5ant12 ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → { 0 } ⊆ 𝑖 )
21 13 20 eqssd ( ( ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖𝑚 ) → 𝑖 = { 0 } )
22 15 ad2antrr ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) → 𝑅 ∈ Ring )
23 simplr ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) )
24 simpr ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) → 𝑖𝐵 )
25 1 ssmxidl ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑖𝐵 ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑖𝑚 )
26 22 23 24 25 syl3anc ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑖𝑚 )
27 21 26 r19.29a ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖𝐵 ) → 𝑖 = { 0 } )
28 simpr ( ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝐵 ) → 𝑖 = 𝐵 )
29 exmidne ( 𝑖 = 𝐵𝑖𝐵 )
30 29 a1i ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 = 𝐵𝑖𝐵 ) )
31 30 orcomd ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖𝐵𝑖 = 𝐵 ) )
32 27 28 31 orim12da ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 = { 0 } ∨ 𝑖 = 𝐵 ) )
33 vex 𝑖 ∈ V
34 33 elpr ( 𝑖 ∈ { { 0 } , 𝐵 } ↔ ( 𝑖 = { 0 } ∨ 𝑖 = 𝐵 ) )
35 32 34 sylibr ( ( 𝜑𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ { { 0 } , 𝐵 } )
36 35 ex ( 𝜑 → ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) → 𝑖 ∈ { { 0 } , 𝐵 } ) )
37 36 ssrdv ( 𝜑 → ( LIdeal ‘ 𝑅 ) ⊆ { { 0 } , 𝐵 } )
38 16 2 lidl0 ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) )
39 15 38 syl ( 𝜑 → { 0 } ∈ ( LIdeal ‘ 𝑅 ) )
40 16 1 lidl1 ( 𝑅 ∈ Ring → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) )
41 15 40 syl ( 𝜑𝐵 ∈ ( LIdeal ‘ 𝑅 ) )
42 39 41 prssd ( 𝜑 → { { 0 } , 𝐵 } ⊆ ( LIdeal ‘ 𝑅 ) )
43 37 42 eqssd ( 𝜑 → ( LIdeal ‘ 𝑅 ) = { { 0 } , 𝐵 } )
44 1 2 16 drngidl ( 𝑅 ∈ NzRing → ( 𝑅 ∈ DivRing ↔ ( LIdeal ‘ 𝑅 ) = { { 0 } , 𝐵 } ) )
45 4 44 syl ( 𝜑 → ( 𝑅 ∈ DivRing ↔ ( LIdeal ‘ 𝑅 ) = { { 0 } , 𝐵 } ) )
46 43 45 mpbird ( 𝜑𝑅 ∈ DivRing )