Step |
Hyp |
Ref |
Expression |
1 |
|
drngmxidlr.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngmxidlr.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngmxidlr.u |
⊢ 𝑀 = ( MaxIdeal ‘ 𝑅 ) |
4 |
|
drngmxidlr.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
5 |
|
drngmxidlr.2 |
⊢ ( 𝜑 → 𝑀 = { { 0 } } ) |
6 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑖 ⊆ 𝑚 ) |
7 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
8 |
7 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑚 ∈ 𝑀 ) |
9 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑀 = { { 0 } } ) |
10 |
8 9
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑚 ∈ { { 0 } } ) |
11 |
|
elsni |
⊢ ( 𝑚 ∈ { { 0 } } → 𝑚 = { 0 } ) |
12 |
10 11
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑚 = { 0 } ) |
13 |
6 12
|
sseqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑖 ⊆ { 0 } ) |
14 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
16 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
17 |
16 2
|
lidl0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0 ∈ 𝑖 ) |
18 |
15 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 0 ∈ 𝑖 ) |
19 |
18
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → { 0 } ⊆ 𝑖 ) |
20 |
19
|
ad5ant12 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → { 0 } ⊆ 𝑖 ) |
21 |
13 20
|
eqssd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑖 ⊆ 𝑚 ) → 𝑖 = { 0 } ) |
22 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) → 𝑅 ∈ Ring ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) → 𝑖 ≠ 𝐵 ) |
25 |
1
|
ssmxidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑖 ≠ 𝐵 ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑖 ⊆ 𝑚 ) |
26 |
22 23 24 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) 𝑖 ⊆ 𝑚 ) |
27 |
21 26
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 ≠ 𝐵 ) → 𝑖 = { 0 } ) |
28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑖 = 𝐵 ) → 𝑖 = 𝐵 ) |
29 |
|
exmidne |
⊢ ( 𝑖 = 𝐵 ∨ 𝑖 ≠ 𝐵 ) |
30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 = 𝐵 ∨ 𝑖 ≠ 𝐵 ) ) |
31 |
30
|
orcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 ≠ 𝐵 ∨ 𝑖 = 𝐵 ) ) |
32 |
27 28 31
|
orim12da |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑖 = { 0 } ∨ 𝑖 = 𝐵 ) ) |
33 |
|
vex |
⊢ 𝑖 ∈ V |
34 |
33
|
elpr |
⊢ ( 𝑖 ∈ { { 0 } , 𝐵 } ↔ ( 𝑖 = { 0 } ∨ 𝑖 = 𝐵 ) ) |
35 |
32 34
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑖 ∈ { { 0 } , 𝐵 } ) |
36 |
35
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) → 𝑖 ∈ { { 0 } , 𝐵 } ) ) |
37 |
36
|
ssrdv |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) ⊆ { { 0 } , 𝐵 } ) |
38 |
16 2
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
39 |
15 38
|
syl |
⊢ ( 𝜑 → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
40 |
16 1
|
lidl1 |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ) |
41 |
15 40
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ) |
42 |
39 41
|
prssd |
⊢ ( 𝜑 → { { 0 } , 𝐵 } ⊆ ( LIdeal ‘ 𝑅 ) ) |
43 |
37 42
|
eqssd |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = { { 0 } , 𝐵 } ) |
44 |
1 2 16
|
drngidl |
⊢ ( 𝑅 ∈ NzRing → ( 𝑅 ∈ DivRing ↔ ( LIdeal ‘ 𝑅 ) = { { 0 } , 𝐵 } ) ) |
45 |
4 44
|
syl |
⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ↔ ( LIdeal ‘ 𝑅 ) = { { 0 } , 𝐵 } ) ) |
46 |
43 45
|
mpbird |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |