| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngidl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
drngidl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
drngidl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 4 |
1 2 3
|
drngnidl |
⊢ ( 𝑅 ∈ DivRing → 𝑈 = { { 0 } , 𝐵 } ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑅 ∈ DivRing ) → 𝑈 = { { 0 } , 𝐵 } ) |
| 6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 7 |
6 2
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 11 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → 𝑅 ∈ Ring ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
| 14 |
13
|
ad4antr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑅 ∈ Ring ) |
| 15 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑦 ∈ 𝐵 ) |
| 16 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑧 ∈ 𝐵 ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 18 |
17
|
eldifad |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ 𝐵 ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑥 ∈ 𝐵 ) |
| 21 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
| 23 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 24 |
23
|
eqcomd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 26 |
1 2 6 9 10 14 15 16 20 22 25
|
ringinveu |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑥 = 𝑧 ) |
| 27 |
26
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 28 |
27 22
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
| 29 |
13
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑅 ∈ Ring ) |
| 30 |
|
simplr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
| 31 |
1 6
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 32 |
13 31
|
syl |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 33 |
32
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 34 |
30
|
snssd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → { 𝑦 } ⊆ 𝐵 ) |
| 35 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
| 36 |
35 1 3
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑦 } ⊆ 𝐵 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ 𝑈 ) |
| 37 |
29 34 36
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ 𝑈 ) |
| 38 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑈 = { { 0 } , 𝐵 } ) |
| 39 |
37 38
|
eleqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ { { 0 } , 𝐵 } ) |
| 40 |
|
elpri |
⊢ ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ { { 0 } , 𝐵 } → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = 𝐵 ) ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = 𝐵 ) ) |
| 42 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 43 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
| 44 |
43
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 0 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 45 |
1 9 2
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑥 ) = 0 ) |
| 46 |
13 18 45
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 0 ( .r ‘ 𝑅 ) 𝑥 ) = 0 ) |
| 47 |
46
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑥 ) = 0 ) |
| 48 |
42 44 47
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 1r ‘ 𝑅 ) = 0 ) |
| 49 |
8
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 50 |
49
|
neneqd |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ¬ ( 1r ‘ 𝑅 ) = 0 ) |
| 51 |
48 50
|
pm2.65da |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ 𝑦 = 0 ) |
| 52 |
51
|
neqned |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑦 ≠ 0 ) |
| 53 |
1 2 35
|
pidlnz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ≠ { 0 } ) |
| 54 |
29 30 52 53
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ≠ { 0 } ) |
| 55 |
54
|
neneqd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = { 0 } ) |
| 56 |
41 55
|
orcnd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = 𝐵 ) |
| 57 |
33 56
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ) |
| 58 |
1 9 35
|
elrspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ↔ ∃ 𝑧 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
| 59 |
58
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ) → ∃ 𝑧 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 60 |
29 30 57 59
|
syl21anc |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ∃ 𝑧 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 61 |
28 60
|
r19.29a |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
| 62 |
61 24
|
jca |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 63 |
62
|
anasss |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 64 |
18
|
snssd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → { 𝑥 } ⊆ 𝐵 ) |
| 65 |
35 1 3
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑥 } ⊆ 𝐵 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ 𝑈 ) |
| 66 |
13 64 65
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ 𝑈 ) |
| 67 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑈 = { { 0 } , 𝐵 } ) |
| 68 |
66 67
|
eleqtrd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ { { 0 } , 𝐵 } ) |
| 69 |
|
elpri |
⊢ ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ { { 0 } , 𝐵 } → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = 𝐵 ) ) |
| 70 |
68 69
|
syl |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = 𝐵 ) ) |
| 71 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ≠ 0 ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 73 |
1 2 35
|
pidlnz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ≠ { 0 } ) |
| 74 |
13 18 72 73
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ≠ { 0 } ) |
| 75 |
74
|
neneqd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ¬ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = { 0 } ) |
| 76 |
70 75
|
orcnd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = 𝐵 ) |
| 77 |
32 76
|
eleqtrrd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) |
| 78 |
1 9 35
|
elrspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 79 |
78
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 80 |
13 18 77 79
|
syl21anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 81 |
63 80
|
reximddv |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 82 |
81
|
ralrimiva |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 83 |
1 2 6 9 10 12
|
isdrng4 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → ( 𝑅 ∈ DivRing ↔ ( ( 1r ‘ 𝑅 ) ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) ) |
| 84 |
8 82 83
|
mpbir2and |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → 𝑅 ∈ DivRing ) |
| 85 |
5 84
|
impbida |
⊢ ( 𝑅 ∈ NzRing → ( 𝑅 ∈ DivRing ↔ 𝑈 = { { 0 } , 𝐵 } ) ) |