Step |
Hyp |
Ref |
Expression |
1 |
|
drngidl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngidl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngidl.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
4 |
1 2 3
|
drngnidl |
⊢ ( 𝑅 ∈ DivRing → 𝑈 = { { 0 } , 𝐵 } ) |
5 |
4
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑅 ∈ DivRing ) → 𝑈 = { { 0 } , 𝐵 } ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
7 |
6 2
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → ( 1r ‘ 𝑅 ) ≠ 0 ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
11 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
12 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → 𝑅 ∈ Ring ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
14 |
13
|
ad4antr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑅 ∈ Ring ) |
15 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑦 ∈ 𝐵 ) |
16 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑧 ∈ 𝐵 ) |
17 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) |
18 |
17
|
eldifad |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ 𝐵 ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑥 ∈ 𝐵 ) |
21 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
22 |
21
|
eqcomd |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
23 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
24 |
23
|
eqcomd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
26 |
1 2 6 9 10 14 15 16 20 22 25
|
ringinveu |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → 𝑥 = 𝑧 ) |
27 |
26
|
oveq1d |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
28 |
27 22
|
eqtrd |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
29 |
13
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑅 ∈ Ring ) |
30 |
|
simplr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
31 |
1 6
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
32 |
13 31
|
syl |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
34 |
30
|
snssd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → { 𝑦 } ⊆ 𝐵 ) |
35 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
36 |
35 1 3
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑦 } ⊆ 𝐵 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ 𝑈 ) |
37 |
29 34 36
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ 𝑈 ) |
38 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑈 = { { 0 } , 𝐵 } ) |
39 |
37 38
|
eleqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ { { 0 } , 𝐵 } ) |
40 |
|
elpri |
⊢ ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ∈ { { 0 } , 𝐵 } → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = 𝐵 ) ) |
41 |
39 40
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = 𝐵 ) ) |
42 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
43 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
44 |
43
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 0 ( .r ‘ 𝑅 ) 𝑥 ) ) |
45 |
1 9 2
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝑥 ) = 0 ) |
46 |
13 18 45
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 0 ( .r ‘ 𝑅 ) 𝑥 ) = 0 ) |
47 |
46
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 0 ( .r ‘ 𝑅 ) 𝑥 ) = 0 ) |
48 |
42 44 47
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 1r ‘ 𝑅 ) = 0 ) |
49 |
8
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ( 1r ‘ 𝑅 ) ≠ 0 ) |
50 |
49
|
neneqd |
⊢ ( ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ∧ 𝑦 = 0 ) → ¬ ( 1r ‘ 𝑅 ) = 0 ) |
51 |
48 50
|
pm2.65da |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ 𝑦 = 0 ) |
52 |
51
|
neqned |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑦 ≠ 0 ) |
53 |
1 2 35
|
pidlnz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ≠ { 0 } ) |
54 |
29 30 52 53
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ≠ { 0 } ) |
55 |
54
|
neneqd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = { 0 } ) |
56 |
41 55
|
orcnd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) = 𝐵 ) |
57 |
33 56
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ) |
58 |
1 9 35
|
rspsnel |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ↔ ∃ 𝑧 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
59 |
58
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑦 } ) ) → ∃ 𝑧 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
60 |
29 30 57 59
|
syl21anc |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ∃ 𝑧 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ) |
61 |
28 60
|
r19.29a |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
62 |
61 24
|
jca |
⊢ ( ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
63 |
62
|
anasss |
⊢ ( ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
64 |
18
|
snssd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → { 𝑥 } ⊆ 𝐵 ) |
65 |
35 1 3
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑥 } ⊆ 𝐵 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ 𝑈 ) |
66 |
13 64 65
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ 𝑈 ) |
67 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑈 = { { 0 } , 𝐵 } ) |
68 |
66 67
|
eleqtrd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ { { 0 } , 𝐵 } ) |
69 |
|
elpri |
⊢ ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ { { 0 } , 𝐵 } → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = 𝐵 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = { 0 } ∨ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = 𝐵 ) ) |
71 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ≠ 0 ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
73 |
1 2 35
|
pidlnz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ≠ { 0 } ) |
74 |
13 18 72 73
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ≠ { 0 } ) |
75 |
74
|
neneqd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ¬ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = { 0 } ) |
76 |
70 75
|
orcnd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = 𝐵 ) |
77 |
32 76
|
eleqtrrd |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) |
78 |
1 9 35
|
rspsnel |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
79 |
78
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
80 |
13 18 77 79
|
syl21anc |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) |
81 |
63 80
|
reximddv |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
82 |
81
|
ralrimiva |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
83 |
1 2 6 9 10 12
|
isdrng4 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → ( 𝑅 ∈ DivRing ↔ ( ( 1r ‘ 𝑅 ) ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) ) |
84 |
8 82 83
|
mpbir2and |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { 0 } , 𝐵 } ) → 𝑅 ∈ DivRing ) |
85 |
5 84
|
impbida |
⊢ ( 𝑅 ∈ NzRing → ( 𝑅 ∈ DivRing ↔ 𝑈 = { { 0 } , 𝐵 } ) ) |