Step |
Hyp |
Ref |
Expression |
1 |
|
drngidlhash.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
4 |
2 3 1
|
drngnidl |
⊢ ( 𝑅 ∈ DivRing → 𝑈 = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) |
5 |
4
|
fveq2d |
⊢ ( 𝑅 ∈ DivRing → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) ) |
6 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
7 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
8 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
9 |
2 8
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
10 |
7 9
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
11 |
8 3
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
12 |
|
nelsn |
⊢ ( ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) → ¬ ( 1r ‘ 𝑅 ) ∈ { ( 0g ‘ 𝑅 ) } ) |
13 |
11 12
|
syl |
⊢ ( 𝑅 ∈ NzRing → ¬ ( 1r ‘ 𝑅 ) ∈ { ( 0g ‘ 𝑅 ) } ) |
14 |
|
nelne1 |
⊢ ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ¬ ( 1r ‘ 𝑅 ) ∈ { ( 0g ‘ 𝑅 ) } ) → ( Base ‘ 𝑅 ) ≠ { ( 0g ‘ 𝑅 ) } ) |
15 |
10 13 14
|
syl2anc |
⊢ ( 𝑅 ∈ NzRing → ( Base ‘ 𝑅 ) ≠ { ( 0g ‘ 𝑅 ) } ) |
16 |
15
|
necomd |
⊢ ( 𝑅 ∈ NzRing → { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ) |
17 |
6 16
|
syl |
⊢ ( 𝑅 ∈ DivRing → { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ) |
18 |
|
snex |
⊢ { ( 0g ‘ 𝑅 ) } ∈ V |
19 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
20 |
|
hashprg |
⊢ ( ( { ( 0g ‘ 𝑅 ) } ∈ V ∧ ( Base ‘ 𝑅 ) ∈ V ) → ( { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ↔ ( ♯ ‘ { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) = 2 ) ) |
21 |
18 19 20
|
mp2an |
⊢ ( { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ↔ ( ♯ ‘ { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) = 2 ) |
22 |
17 21
|
sylib |
⊢ ( 𝑅 ∈ DivRing → ( ♯ ‘ { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) = 2 ) |
23 |
5 22
|
eqtrd |
⊢ ( 𝑅 ∈ DivRing → ( ♯ ‘ 𝑈 ) = 2 ) |
24 |
23
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ DivRing ) → ( ♯ ‘ 𝑈 ) = 2 ) |
25 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → 𝑅 ∈ Ring ) |
26 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ 𝑈 ) = 2 ) |
27 |
|
2re |
⊢ 2 ∈ ℝ |
28 |
26 27
|
eqeltrdi |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ 𝑈 ) ∈ ℝ ) |
29 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
30 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
32 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
33 |
|
hashsng |
⊢ ( ( 0g ‘ 𝑅 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = 1 ) |
34 |
32 33
|
ax-mp |
⊢ ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = 1 |
35 |
31 34
|
eqtr3di |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) |
36 |
2 3
|
0ringidl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } } ) |
37 |
29 35 36
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } } ) |
38 |
1 37
|
eqtrid |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → 𝑈 = { { ( 0g ‘ 𝑅 ) } } ) |
39 |
38
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ { { ( 0g ‘ 𝑅 ) } } ) ) |
40 |
|
hashsng |
⊢ ( { ( 0g ‘ 𝑅 ) } ∈ V → ( ♯ ‘ { { ( 0g ‘ 𝑅 ) } } ) = 1 ) |
41 |
18 40
|
ax-mp |
⊢ ( ♯ ‘ { { ( 0g ‘ 𝑅 ) } } ) = 1 |
42 |
39 41
|
eqtrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ 𝑈 ) = 1 ) |
43 |
42
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ 𝑈 ) = 1 ) |
44 |
|
1lt2 |
⊢ 1 < 2 |
45 |
43 44
|
eqbrtrdi |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ 𝑈 ) < 2 ) |
46 |
28 45
|
ltned |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ 𝑈 ) ≠ 2 ) |
47 |
46
|
neneqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ¬ ( ♯ ‘ 𝑈 ) = 2 ) |
48 |
26 47
|
pm2.65da |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → ¬ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) |
49 |
48
|
neqned |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ) |
50 |
2 3 8
|
01eq0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) → ( Base ‘ 𝑅 ) = { ( 0g ‘ 𝑅 ) } ) |
51 |
50
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) → { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) |
52 |
51
|
ex |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) → { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) ) |
53 |
52
|
necon3d |
⊢ ( 𝑅 ∈ Ring → ( { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ≠ ( 1r ‘ 𝑅 ) ) ) |
54 |
25 49 53
|
sylc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → ( 0g ‘ 𝑅 ) ≠ ( 1r ‘ 𝑅 ) ) |
55 |
54
|
necomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
56 |
8 3
|
isnzr |
⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
57 |
25 55 56
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → 𝑅 ∈ NzRing ) |
58 |
1
|
fvexi |
⊢ 𝑈 ∈ V |
59 |
58
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → 𝑈 ∈ V ) |
60 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → ( ♯ ‘ 𝑈 ) = 2 ) |
61 |
1 3
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { ( 0g ‘ 𝑅 ) } ∈ 𝑈 ) |
62 |
25 61
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → { ( 0g ‘ 𝑅 ) } ∈ 𝑈 ) |
63 |
1 2
|
lidl1 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ 𝑈 ) |
64 |
25 63
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) |
65 |
|
hash2prd |
⊢ ( ( 𝑈 ∈ V ∧ ( ♯ ‘ 𝑈 ) = 2 ) → ( ( { ( 0g ‘ 𝑅 ) } ∈ 𝑈 ∧ ( Base ‘ 𝑅 ) ∈ 𝑈 ∧ { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ) → 𝑈 = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) ) |
66 |
65
|
imp |
⊢ ( ( ( 𝑈 ∈ V ∧ ( ♯ ‘ 𝑈 ) = 2 ) ∧ ( { ( 0g ‘ 𝑅 ) } ∈ 𝑈 ∧ ( Base ‘ 𝑅 ) ∈ 𝑈 ∧ { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ) ) → 𝑈 = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) |
67 |
59 60 62 64 49 66
|
syl23anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → 𝑈 = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) |
68 |
2 3 1
|
drngidl |
⊢ ( 𝑅 ∈ NzRing → ( 𝑅 ∈ DivRing ↔ 𝑈 = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) ) |
69 |
68
|
biimpar |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑈 = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) → 𝑅 ∈ DivRing ) |
70 |
57 67 69
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝑈 ) = 2 ) → 𝑅 ∈ DivRing ) |
71 |
24 70
|
impbida |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ DivRing ↔ ( ♯ ‘ 𝑈 ) = 2 ) ) |