| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngidlhash.u |
|- U = ( LIdeal ` R ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 4 |
2 3 1
|
drngnidl |
|- ( R e. DivRing -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) |
| 5 |
4
|
fveq2d |
|- ( R e. DivRing -> ( # ` U ) = ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) ) |
| 6 |
|
drngnzr |
|- ( R e. DivRing -> R e. NzRing ) |
| 7 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 9 |
2 8
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 10 |
7 9
|
syl |
|- ( R e. NzRing -> ( 1r ` R ) e. ( Base ` R ) ) |
| 11 |
8 3
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 12 |
|
nelsn |
|- ( ( 1r ` R ) =/= ( 0g ` R ) -> -. ( 1r ` R ) e. { ( 0g ` R ) } ) |
| 13 |
11 12
|
syl |
|- ( R e. NzRing -> -. ( 1r ` R ) e. { ( 0g ` R ) } ) |
| 14 |
|
nelne1 |
|- ( ( ( 1r ` R ) e. ( Base ` R ) /\ -. ( 1r ` R ) e. { ( 0g ` R ) } ) -> ( Base ` R ) =/= { ( 0g ` R ) } ) |
| 15 |
10 13 14
|
syl2anc |
|- ( R e. NzRing -> ( Base ` R ) =/= { ( 0g ` R ) } ) |
| 16 |
15
|
necomd |
|- ( R e. NzRing -> { ( 0g ` R ) } =/= ( Base ` R ) ) |
| 17 |
6 16
|
syl |
|- ( R e. DivRing -> { ( 0g ` R ) } =/= ( Base ` R ) ) |
| 18 |
|
snex |
|- { ( 0g ` R ) } e. _V |
| 19 |
|
fvex |
|- ( Base ` R ) e. _V |
| 20 |
|
hashprg |
|- ( ( { ( 0g ` R ) } e. _V /\ ( Base ` R ) e. _V ) -> ( { ( 0g ` R ) } =/= ( Base ` R ) <-> ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) = 2 ) ) |
| 21 |
18 19 20
|
mp2an |
|- ( { ( 0g ` R ) } =/= ( Base ` R ) <-> ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) = 2 ) |
| 22 |
17 21
|
sylib |
|- ( R e. DivRing -> ( # ` { { ( 0g ` R ) } , ( Base ` R ) } ) = 2 ) |
| 23 |
5 22
|
eqtrd |
|- ( R e. DivRing -> ( # ` U ) = 2 ) |
| 24 |
23
|
adantl |
|- ( ( R e. Ring /\ R e. DivRing ) -> ( # ` U ) = 2 ) |
| 25 |
|
simpl |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> R e. Ring ) |
| 26 |
|
simplr |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = 2 ) |
| 27 |
|
2re |
|- 2 e. RR |
| 28 |
26 27
|
eqeltrdi |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) e. RR ) |
| 29 |
|
simpl |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> R e. Ring ) |
| 30 |
|
simpr |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> { ( 0g ` R ) } = ( Base ` R ) ) |
| 31 |
30
|
fveq2d |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` { ( 0g ` R ) } ) = ( # ` ( Base ` R ) ) ) |
| 32 |
|
fvex |
|- ( 0g ` R ) e. _V |
| 33 |
|
hashsng |
|- ( ( 0g ` R ) e. _V -> ( # ` { ( 0g ` R ) } ) = 1 ) |
| 34 |
32 33
|
ax-mp |
|- ( # ` { ( 0g ` R ) } ) = 1 |
| 35 |
31 34
|
eqtr3di |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` ( Base ` R ) ) = 1 ) |
| 36 |
2 3
|
0ringidl |
|- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
| 37 |
29 35 36
|
syl2anc |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( LIdeal ` R ) = { { ( 0g ` R ) } } ) |
| 38 |
1 37
|
eqtrid |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> U = { { ( 0g ` R ) } } ) |
| 39 |
38
|
fveq2d |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = ( # ` { { ( 0g ` R ) } } ) ) |
| 40 |
|
hashsng |
|- ( { ( 0g ` R ) } e. _V -> ( # ` { { ( 0g ` R ) } } ) = 1 ) |
| 41 |
18 40
|
ax-mp |
|- ( # ` { { ( 0g ` R ) } } ) = 1 |
| 42 |
39 41
|
eqtrdi |
|- ( ( R e. Ring /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = 1 ) |
| 43 |
42
|
adantlr |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) = 1 ) |
| 44 |
|
1lt2 |
|- 1 < 2 |
| 45 |
43 44
|
eqbrtrdi |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) < 2 ) |
| 46 |
28 45
|
ltned |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` U ) =/= 2 ) |
| 47 |
46
|
neneqd |
|- ( ( ( R e. Ring /\ ( # ` U ) = 2 ) /\ { ( 0g ` R ) } = ( Base ` R ) ) -> -. ( # ` U ) = 2 ) |
| 48 |
26 47
|
pm2.65da |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> -. { ( 0g ` R ) } = ( Base ` R ) ) |
| 49 |
48
|
neqned |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> { ( 0g ` R ) } =/= ( Base ` R ) ) |
| 50 |
2 3 8
|
01eq0ring |
|- ( ( R e. Ring /\ ( 0g ` R ) = ( 1r ` R ) ) -> ( Base ` R ) = { ( 0g ` R ) } ) |
| 51 |
50
|
eqcomd |
|- ( ( R e. Ring /\ ( 0g ` R ) = ( 1r ` R ) ) -> { ( 0g ` R ) } = ( Base ` R ) ) |
| 52 |
51
|
ex |
|- ( R e. Ring -> ( ( 0g ` R ) = ( 1r ` R ) -> { ( 0g ` R ) } = ( Base ` R ) ) ) |
| 53 |
52
|
necon3d |
|- ( R e. Ring -> ( { ( 0g ` R ) } =/= ( Base ` R ) -> ( 0g ` R ) =/= ( 1r ` R ) ) ) |
| 54 |
25 49 53
|
sylc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( 0g ` R ) =/= ( 1r ` R ) ) |
| 55 |
54
|
necomd |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 56 |
8 3
|
isnzr |
|- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 57 |
25 55 56
|
sylanbrc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> R e. NzRing ) |
| 58 |
1
|
fvexi |
|- U e. _V |
| 59 |
58
|
a1i |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> U e. _V ) |
| 60 |
|
simpr |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( # ` U ) = 2 ) |
| 61 |
1 3
|
lidl0 |
|- ( R e. Ring -> { ( 0g ` R ) } e. U ) |
| 62 |
25 61
|
syl |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> { ( 0g ` R ) } e. U ) |
| 63 |
1 2
|
lidl1 |
|- ( R e. Ring -> ( Base ` R ) e. U ) |
| 64 |
25 63
|
syl |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> ( Base ` R ) e. U ) |
| 65 |
|
hash2prd |
|- ( ( U e. _V /\ ( # ` U ) = 2 ) -> ( ( { ( 0g ` R ) } e. U /\ ( Base ` R ) e. U /\ { ( 0g ` R ) } =/= ( Base ` R ) ) -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) ) |
| 66 |
65
|
imp |
|- ( ( ( U e. _V /\ ( # ` U ) = 2 ) /\ ( { ( 0g ` R ) } e. U /\ ( Base ` R ) e. U /\ { ( 0g ` R ) } =/= ( Base ` R ) ) ) -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) |
| 67 |
59 60 62 64 49 66
|
syl23anc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> U = { { ( 0g ` R ) } , ( Base ` R ) } ) |
| 68 |
2 3 1
|
drngidl |
|- ( R e. NzRing -> ( R e. DivRing <-> U = { { ( 0g ` R ) } , ( Base ` R ) } ) ) |
| 69 |
68
|
biimpar |
|- ( ( R e. NzRing /\ U = { { ( 0g ` R ) } , ( Base ` R ) } ) -> R e. DivRing ) |
| 70 |
57 67 69
|
syl2anc |
|- ( ( R e. Ring /\ ( # ` U ) = 2 ) -> R e. DivRing ) |
| 71 |
24 70
|
impbida |
|- ( R e. Ring -> ( R e. DivRing <-> ( # ` U ) = 2 ) ) |