Metamath Proof Explorer


Theorem drngidl

Description: A nonzero ring is a division ring if and only if its only left ideals are the zero ideal and the unit ideal. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses drngidl.b B=BaseR
drngidl.z 0˙=0R
drngidl.u U=LIdealR
Assertion drngidl RNzRingRDivRingU=0˙B

Proof

Step Hyp Ref Expression
1 drngidl.b B=BaseR
2 drngidl.z 0˙=0R
3 drngidl.u U=LIdealR
4 1 2 3 drngnidl RDivRingU=0˙B
5 4 adantl RNzRingRDivRingU=0˙B
6 eqid 1R=1R
7 6 2 nzrnz RNzRing1R0˙
8 7 adantr RNzRingU=0˙B1R0˙
9 eqid R=R
10 eqid UnitR=UnitR
11 nzrring RNzRingRRing
12 11 adantr RNzRingU=0˙BRRing
13 12 adantr RNzRingU=0˙BxB0˙RRing
14 13 ad4antr RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyRRing
15 simp-4r RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyyB
16 simplr RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyzB
17 simpr RNzRingU=0˙BxB0˙xB0˙
18 17 eldifad RNzRingU=0˙BxB0˙xB
19 18 ad2antrr RNzRingU=0˙BxB0˙yB1R=yRxxB
20 19 ad2antrr RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyxB
21 simpr RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRy1R=zRy
22 21 eqcomd RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyzRy=1R
23 simpr RNzRingU=0˙BxB0˙yB1R=yRx1R=yRx
24 23 eqcomd RNzRingU=0˙BxB0˙yB1R=yRxyRx=1R
25 24 ad2antrr RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyyRx=1R
26 1 2 6 9 10 14 15 16 20 22 25 ringinveu RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyx=z
27 26 oveq1d RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyxRy=zRy
28 27 22 eqtrd RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRyxRy=1R
29 13 ad2antrr RNzRingU=0˙BxB0˙yB1R=yRxRRing
30 simplr RNzRingU=0˙BxB0˙yB1R=yRxyB
31 1 6 ringidcl RRing1RB
32 13 31 syl RNzRingU=0˙BxB0˙1RB
33 32 ad2antrr RNzRingU=0˙BxB0˙yB1R=yRx1RB
34 30 snssd RNzRingU=0˙BxB0˙yB1R=yRxyB
35 eqid RSpanR=RSpanR
36 35 1 3 rspcl RRingyBRSpanRyU
37 29 34 36 syl2anc RNzRingU=0˙BxB0˙yB1R=yRxRSpanRyU
38 simp-4r RNzRingU=0˙BxB0˙yB1R=yRxU=0˙B
39 37 38 eleqtrd RNzRingU=0˙BxB0˙yB1R=yRxRSpanRy0˙B
40 elpri RSpanRy0˙BRSpanRy=0˙RSpanRy=B
41 39 40 syl RNzRingU=0˙BxB0˙yB1R=yRxRSpanRy=0˙RSpanRy=B
42 simplr RNzRingU=0˙BxB0˙yB1R=yRxy=0˙1R=yRx
43 simpr RNzRingU=0˙BxB0˙yB1R=yRxy=0˙y=0˙
44 43 oveq1d RNzRingU=0˙BxB0˙yB1R=yRxy=0˙yRx=0˙Rx
45 1 9 2 ringlz RRingxB0˙Rx=0˙
46 13 18 45 syl2anc RNzRingU=0˙BxB0˙0˙Rx=0˙
47 46 ad3antrrr RNzRingU=0˙BxB0˙yB1R=yRxy=0˙0˙Rx=0˙
48 42 44 47 3eqtrd RNzRingU=0˙BxB0˙yB1R=yRxy=0˙1R=0˙
49 8 ad4antr RNzRingU=0˙BxB0˙yB1R=yRxy=0˙1R0˙
50 49 neneqd RNzRingU=0˙BxB0˙yB1R=yRxy=0˙¬1R=0˙
51 48 50 pm2.65da RNzRingU=0˙BxB0˙yB1R=yRx¬y=0˙
52 51 neqned RNzRingU=0˙BxB0˙yB1R=yRxy0˙
53 1 2 35 pidlnz RRingyBy0˙RSpanRy0˙
54 29 30 52 53 syl3anc RNzRingU=0˙BxB0˙yB1R=yRxRSpanRy0˙
55 54 neneqd RNzRingU=0˙BxB0˙yB1R=yRx¬RSpanRy=0˙
56 41 55 orcnd RNzRingU=0˙BxB0˙yB1R=yRxRSpanRy=B
57 33 56 eleqtrrd RNzRingU=0˙BxB0˙yB1R=yRx1RRSpanRy
58 1 9 35 rspsnel RRingyB1RRSpanRyzB1R=zRy
59 58 biimpa RRingyB1RRSpanRyzB1R=zRy
60 29 30 57 59 syl21anc RNzRingU=0˙BxB0˙yB1R=yRxzB1R=zRy
61 28 60 r19.29a RNzRingU=0˙BxB0˙yB1R=yRxxRy=1R
62 61 24 jca RNzRingU=0˙BxB0˙yB1R=yRxxRy=1RyRx=1R
63 62 anasss RNzRingU=0˙BxB0˙yB1R=yRxxRy=1RyRx=1R
64 18 snssd RNzRingU=0˙BxB0˙xB
65 35 1 3 rspcl RRingxBRSpanRxU
66 13 64 65 syl2anc RNzRingU=0˙BxB0˙RSpanRxU
67 simplr RNzRingU=0˙BxB0˙U=0˙B
68 66 67 eleqtrd RNzRingU=0˙BxB0˙RSpanRx0˙B
69 elpri RSpanRx0˙BRSpanRx=0˙RSpanRx=B
70 68 69 syl RNzRingU=0˙BxB0˙RSpanRx=0˙RSpanRx=B
71 eldifsni xB0˙x0˙
72 71 adantl RNzRingU=0˙BxB0˙x0˙
73 1 2 35 pidlnz RRingxBx0˙RSpanRx0˙
74 13 18 72 73 syl3anc RNzRingU=0˙BxB0˙RSpanRx0˙
75 74 neneqd RNzRingU=0˙BxB0˙¬RSpanRx=0˙
76 70 75 orcnd RNzRingU=0˙BxB0˙RSpanRx=B
77 32 76 eleqtrrd RNzRingU=0˙BxB0˙1RRSpanRx
78 1 9 35 rspsnel RRingxB1RRSpanRxyB1R=yRx
79 78 biimpa RRingxB1RRSpanRxyB1R=yRx
80 13 18 77 79 syl21anc RNzRingU=0˙BxB0˙yB1R=yRx
81 63 80 reximddv RNzRingU=0˙BxB0˙yBxRy=1RyRx=1R
82 81 ralrimiva RNzRingU=0˙BxB0˙yBxRy=1RyRx=1R
83 1 2 6 9 10 12 isdrng4 RNzRingU=0˙BRDivRing1R0˙xB0˙yBxRy=1RyRx=1R
84 8 82 83 mpbir2and RNzRingU=0˙BRDivRing
85 5 84 impbida RNzRingRDivRingU=0˙B