| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngnidl.b |
|
| 2 |
|
drngnidl.z |
|
| 3 |
|
drngnidl.u |
|
| 4 |
|
animorrl |
|
| 5 |
|
drngring |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simplr |
|
| 8 |
|
simpr |
|
| 9 |
3 2
|
lidlnz |
|
| 10 |
6 7 8 9
|
syl3anc |
|
| 11 |
|
simpll |
|
| 12 |
1 3
|
lidlss |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
sselda |
|
| 15 |
14
|
adantrr |
|
| 16 |
|
simprr |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
1 2 17 18 19
|
drnginvrl |
|
| 21 |
11 15 16 20
|
syl3anc |
|
| 22 |
5
|
ad2antrr |
|
| 23 |
|
simplr |
|
| 24 |
1 2 19
|
drnginvrcl |
|
| 25 |
11 15 16 24
|
syl3anc |
|
| 26 |
|
simprl |
|
| 27 |
3 1 17
|
lidlmcl |
|
| 28 |
22 23 25 26 27
|
syl22anc |
|
| 29 |
21 28
|
eqeltrrd |
|
| 30 |
29
|
rexlimdvaa |
|
| 31 |
30
|
imp |
|
| 32 |
10 31
|
syldan |
|
| 33 |
3 1 18
|
lidl1el |
|
| 34 |
5 33
|
sylan |
|
| 35 |
34
|
adantr |
|
| 36 |
32 35
|
mpbid |
|
| 37 |
36
|
olcd |
|
| 38 |
4 37
|
pm2.61dane |
|
| 39 |
|
vex |
|
| 40 |
39
|
elpr |
|
| 41 |
38 40
|
sylibr |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
ssrdv |
|
| 44 |
3 2
|
lidl0 |
|
| 45 |
3 1
|
lidl1 |
|
| 46 |
44 45
|
prssd |
|
| 47 |
5 46
|
syl |
|
| 48 |
43 47
|
eqssd |
|