Step |
Hyp |
Ref |
Expression |
1 |
|
drngmxidlr.b |
|- B = ( Base ` R ) |
2 |
|
drngmxidlr.z |
|- .0. = ( 0g ` R ) |
3 |
|
drngmxidlr.u |
|- M = ( MaxIdeal ` R ) |
4 |
|
drngmxidlr.r |
|- ( ph -> R e. NzRing ) |
5 |
|
drngmxidlr.2 |
|- ( ph -> M = { { .0. } } ) |
6 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> i C_ m ) |
7 |
|
simplr |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> m e. ( MaxIdeal ` R ) ) |
8 |
7 3
|
eleqtrrdi |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> m e. M ) |
9 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> M = { { .0. } } ) |
10 |
8 9
|
eleqtrd |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> m e. { { .0. } } ) |
11 |
|
elsni |
|- ( m e. { { .0. } } -> m = { .0. } ) |
12 |
10 11
|
syl |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> m = { .0. } ) |
13 |
6 12
|
sseqtrd |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> i C_ { .0. } ) |
14 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
15 |
4 14
|
syl |
|- ( ph -> R e. Ring ) |
16 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
17 |
16 2
|
lidl0cl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) ) -> .0. e. i ) |
18 |
15 17
|
sylan |
|- ( ( ph /\ i e. ( LIdeal ` R ) ) -> .0. e. i ) |
19 |
18
|
snssd |
|- ( ( ph /\ i e. ( LIdeal ` R ) ) -> { .0. } C_ i ) |
20 |
19
|
ad5ant12 |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> { .0. } C_ i ) |
21 |
13 20
|
eqssd |
|- ( ( ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) /\ m e. ( MaxIdeal ` R ) ) /\ i C_ m ) -> i = { .0. } ) |
22 |
15
|
ad2antrr |
|- ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) -> R e. Ring ) |
23 |
|
simplr |
|- ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) -> i e. ( LIdeal ` R ) ) |
24 |
|
simpr |
|- ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) -> i =/= B ) |
25 |
1
|
ssmxidl |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ i =/= B ) -> E. m e. ( MaxIdeal ` R ) i C_ m ) |
26 |
22 23 24 25
|
syl3anc |
|- ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) -> E. m e. ( MaxIdeal ` R ) i C_ m ) |
27 |
21 26
|
r19.29a |
|- ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i =/= B ) -> i = { .0. } ) |
28 |
|
simpr |
|- ( ( ( ph /\ i e. ( LIdeal ` R ) ) /\ i = B ) -> i = B ) |
29 |
|
exmidne |
|- ( i = B \/ i =/= B ) |
30 |
29
|
a1i |
|- ( ( ph /\ i e. ( LIdeal ` R ) ) -> ( i = B \/ i =/= B ) ) |
31 |
30
|
orcomd |
|- ( ( ph /\ i e. ( LIdeal ` R ) ) -> ( i =/= B \/ i = B ) ) |
32 |
27 28 31
|
orim12da |
|- ( ( ph /\ i e. ( LIdeal ` R ) ) -> ( i = { .0. } \/ i = B ) ) |
33 |
|
vex |
|- i e. _V |
34 |
33
|
elpr |
|- ( i e. { { .0. } , B } <-> ( i = { .0. } \/ i = B ) ) |
35 |
32 34
|
sylibr |
|- ( ( ph /\ i e. ( LIdeal ` R ) ) -> i e. { { .0. } , B } ) |
36 |
35
|
ex |
|- ( ph -> ( i e. ( LIdeal ` R ) -> i e. { { .0. } , B } ) ) |
37 |
36
|
ssrdv |
|- ( ph -> ( LIdeal ` R ) C_ { { .0. } , B } ) |
38 |
16 2
|
lidl0 |
|- ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) |
39 |
15 38
|
syl |
|- ( ph -> { .0. } e. ( LIdeal ` R ) ) |
40 |
16 1
|
lidl1 |
|- ( R e. Ring -> B e. ( LIdeal ` R ) ) |
41 |
15 40
|
syl |
|- ( ph -> B e. ( LIdeal ` R ) ) |
42 |
39 41
|
prssd |
|- ( ph -> { { .0. } , B } C_ ( LIdeal ` R ) ) |
43 |
37 42
|
eqssd |
|- ( ph -> ( LIdeal ` R ) = { { .0. } , B } ) |
44 |
1 2 16
|
drngidl |
|- ( R e. NzRing -> ( R e. DivRing <-> ( LIdeal ` R ) = { { .0. } , B } ) ) |
45 |
4 44
|
syl |
|- ( ph -> ( R e. DivRing <-> ( LIdeal ` R ) = { { .0. } , B } ) ) |
46 |
43 45
|
mpbird |
|- ( ph -> R e. DivRing ) |