Metamath Proof Explorer


Theorem krull

Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024)

Ref Expression
Assertion krull
|- ( R e. NzRing -> E. m m e. ( MaxIdeal ` R ) )

Proof

Step Hyp Ref Expression
1 nzrring
 |-  ( R e. NzRing -> R e. Ring )
2 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
3 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
4 2 3 lidl0
 |-  ( R e. Ring -> { ( 0g ` R ) } e. ( LIdeal ` R ) )
5 1 4 syl
 |-  ( R e. NzRing -> { ( 0g ` R ) } e. ( LIdeal ` R ) )
6 fvex
 |-  ( 0g ` R ) e. _V
7 hashsng
 |-  ( ( 0g ` R ) e. _V -> ( # ` { ( 0g ` R ) } ) = 1 )
8 6 7 ax-mp
 |-  ( # ` { ( 0g ` R ) } ) = 1
9 simpr
 |-  ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> { ( 0g ` R ) } = ( Base ` R ) )
10 9 fveq2d
 |-  ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` { ( 0g ` R ) } ) = ( # ` ( Base ` R ) ) )
11 8 10 syl5eqr
 |-  ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 = ( # ` ( Base ` R ) ) )
12 1red
 |-  ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 e. RR )
13 eqid
 |-  ( Base ` R ) = ( Base ` R )
14 13 isnzr2hash
 |-  ( R e. NzRing <-> ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) )
15 14 simprbi
 |-  ( R e. NzRing -> 1 < ( # ` ( Base ` R ) ) )
16 15 adantr
 |-  ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 < ( # ` ( Base ` R ) ) )
17 12 16 ltned
 |-  ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 =/= ( # ` ( Base ` R ) ) )
18 17 neneqd
 |-  ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> -. 1 = ( # ` ( Base ` R ) ) )
19 11 18 pm2.65da
 |-  ( R e. NzRing -> -. { ( 0g ` R ) } = ( Base ` R ) )
20 19 neqned
 |-  ( R e. NzRing -> { ( 0g ` R ) } =/= ( Base ` R ) )
21 13 ssmxidl
 |-  ( ( R e. Ring /\ { ( 0g ` R ) } e. ( LIdeal ` R ) /\ { ( 0g ` R ) } =/= ( Base ` R ) ) -> E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m )
22 1 5 20 21 syl3anc
 |-  ( R e. NzRing -> E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m )
23 df-rex
 |-  ( E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m <-> E. m ( m e. ( MaxIdeal ` R ) /\ { ( 0g ` R ) } C_ m ) )
24 exsimpl
 |-  ( E. m ( m e. ( MaxIdeal ` R ) /\ { ( 0g ` R ) } C_ m ) -> E. m m e. ( MaxIdeal ` R ) )
25 23 24 sylbi
 |-  ( E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m -> E. m m e. ( MaxIdeal ` R ) )
26 22 25 syl
 |-  ( R e. NzRing -> E. m m e. ( MaxIdeal ` R ) )