Step |
Hyp |
Ref |
Expression |
1 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
2 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
3 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
4 |
2 3
|
lidl0 |
|- ( R e. Ring -> { ( 0g ` R ) } e. ( LIdeal ` R ) ) |
5 |
1 4
|
syl |
|- ( R e. NzRing -> { ( 0g ` R ) } e. ( LIdeal ` R ) ) |
6 |
|
fvex |
|- ( 0g ` R ) e. _V |
7 |
|
hashsng |
|- ( ( 0g ` R ) e. _V -> ( # ` { ( 0g ` R ) } ) = 1 ) |
8 |
6 7
|
ax-mp |
|- ( # ` { ( 0g ` R ) } ) = 1 |
9 |
|
simpr |
|- ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> { ( 0g ` R ) } = ( Base ` R ) ) |
10 |
9
|
fveq2d |
|- ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> ( # ` { ( 0g ` R ) } ) = ( # ` ( Base ` R ) ) ) |
11 |
8 10
|
eqtr3id |
|- ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 = ( # ` ( Base ` R ) ) ) |
12 |
|
1red |
|- ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 e. RR ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
13
|
isnzr2hash |
|- ( R e. NzRing <-> ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) ) |
15 |
14
|
simprbi |
|- ( R e. NzRing -> 1 < ( # ` ( Base ` R ) ) ) |
16 |
15
|
adantr |
|- ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 < ( # ` ( Base ` R ) ) ) |
17 |
12 16
|
ltned |
|- ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> 1 =/= ( # ` ( Base ` R ) ) ) |
18 |
17
|
neneqd |
|- ( ( R e. NzRing /\ { ( 0g ` R ) } = ( Base ` R ) ) -> -. 1 = ( # ` ( Base ` R ) ) ) |
19 |
11 18
|
pm2.65da |
|- ( R e. NzRing -> -. { ( 0g ` R ) } = ( Base ` R ) ) |
20 |
19
|
neqned |
|- ( R e. NzRing -> { ( 0g ` R ) } =/= ( Base ` R ) ) |
21 |
13
|
ssmxidl |
|- ( ( R e. Ring /\ { ( 0g ` R ) } e. ( LIdeal ` R ) /\ { ( 0g ` R ) } =/= ( Base ` R ) ) -> E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m ) |
22 |
1 5 20 21
|
syl3anc |
|- ( R e. NzRing -> E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m ) |
23 |
|
df-rex |
|- ( E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m <-> E. m ( m e. ( MaxIdeal ` R ) /\ { ( 0g ` R ) } C_ m ) ) |
24 |
|
exsimpl |
|- ( E. m ( m e. ( MaxIdeal ` R ) /\ { ( 0g ` R ) } C_ m ) -> E. m m e. ( MaxIdeal ` R ) ) |
25 |
23 24
|
sylbi |
|- ( E. m e. ( MaxIdeal ` R ) { ( 0g ` R ) } C_ m -> E. m m e. ( MaxIdeal ` R ) ) |
26 |
22 25
|
syl |
|- ( R e. NzRing -> E. m m e. ( MaxIdeal ` R ) ) |