| Step |
Hyp |
Ref |
Expression |
| 1 |
|
krull |
|- ( R e. NzRing -> E. m m e. ( MaxIdeal ` R ) ) |
| 2 |
1
|
adantl |
|- ( ( R e. Ring /\ R e. NzRing ) -> E. m m e. ( MaxIdeal ` R ) ) |
| 3 |
|
19.42v |
|- ( E. m ( R e. Ring /\ m e. ( MaxIdeal ` R ) ) <-> ( R e. Ring /\ E. m m e. ( MaxIdeal ` R ) ) ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
4
|
mxidlnzr |
|- ( ( R e. Ring /\ m e. ( MaxIdeal ` R ) ) -> R e. NzRing ) |
| 6 |
5
|
exlimiv |
|- ( E. m ( R e. Ring /\ m e. ( MaxIdeal ` R ) ) -> R e. NzRing ) |
| 7 |
3 6
|
sylbir |
|- ( ( R e. Ring /\ E. m m e. ( MaxIdeal ` R ) ) -> R e. NzRing ) |
| 8 |
2 7
|
impbida |
|- ( R e. Ring -> ( R e. NzRing <-> E. m m e. ( MaxIdeal ` R ) ) ) |