Metamath Proof Explorer


Theorem mxidlnzrb

Description: A ring is nonzero if and only if it has maximal ideals. (Contributed by Thierry Arnoux, 10-Apr-2024)

Ref Expression
Assertion mxidlnzrb ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 krull ( 𝑅 ∈ NzRing → ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) )
2 1 adantl ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ NzRing ) → ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) )
3 19.42v ( ∃ 𝑚 ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ↔ ( 𝑅 ∈ Ring ∧ ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 4 mxidlnzr ( ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ NzRing )
6 5 exlimiv ( ∃ 𝑚 ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ NzRing )
7 3 6 sylbir ( ( 𝑅 ∈ Ring ∧ ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ NzRing )
8 2 7 impbida ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) )