| Step |
Hyp |
Ref |
Expression |
| 1 |
|
krull |
⊢ ( 𝑅 ∈ NzRing → ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ NzRing ) → ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 3 |
|
19.42v |
⊢ ( ∃ 𝑚 ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ↔ ( 𝑅 ∈ Ring ∧ ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
4
|
mxidlnzr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ NzRing ) |
| 6 |
5
|
exlimiv |
⊢ ( ∃ 𝑚 ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ NzRing ) |
| 7 |
3 6
|
sylbir |
⊢ ( ( 𝑅 ∈ Ring ∧ ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ NzRing ) |
| 8 |
2 7
|
impbida |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) ) |