| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 2 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 4 |
2 3
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { ( 0g ‘ 𝑅 ) } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝑅 ∈ NzRing → { ( 0g ‘ 𝑅 ) } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 6 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
| 7 |
|
hashsng |
⊢ ( ( 0g ‘ 𝑅 ) ∈ V → ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = 1 ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = 1 |
| 9 |
|
simpr |
⊢ ( ( 𝑅 ∈ NzRing ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( ( 𝑅 ∈ NzRing ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ { ( 0g ‘ 𝑅 ) } ) = ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 |
8 10
|
eqtr3id |
⊢ ( ( 𝑅 ∈ NzRing ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → 1 = ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 |
|
1red |
⊢ ( ( 𝑅 ∈ NzRing ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → 1 ∈ ℝ ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 14 |
13
|
isnzr2hash |
⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) ) |
| 15 |
14
|
simprbi |
⊢ ( 𝑅 ∈ NzRing → 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → 1 < ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 17 |
12 16
|
ltned |
⊢ ( ( 𝑅 ∈ NzRing ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → 1 ≠ ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 18 |
17
|
neneqd |
⊢ ( ( 𝑅 ∈ NzRing ∧ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) → ¬ 1 = ( ♯ ‘ ( Base ‘ 𝑅 ) ) ) |
| 19 |
11 18
|
pm2.65da |
⊢ ( 𝑅 ∈ NzRing → ¬ { ( 0g ‘ 𝑅 ) } = ( Base ‘ 𝑅 ) ) |
| 20 |
19
|
neqned |
⊢ ( 𝑅 ∈ NzRing → { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ) |
| 21 |
13
|
ssmxidl |
⊢ ( ( 𝑅 ∈ Ring ∧ { ( 0g ‘ 𝑅 ) } ∈ ( LIdeal ‘ 𝑅 ) ∧ { ( 0g ‘ 𝑅 ) } ≠ ( Base ‘ 𝑅 ) ) → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } ⊆ 𝑚 ) |
| 22 |
1 5 20 21
|
syl3anc |
⊢ ( 𝑅 ∈ NzRing → ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } ⊆ 𝑚 ) |
| 23 |
|
df-rex |
⊢ ( ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } ⊆ 𝑚 ↔ ∃ 𝑚 ( 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ { ( 0g ‘ 𝑅 ) } ⊆ 𝑚 ) ) |
| 24 |
|
exsimpl |
⊢ ( ∃ 𝑚 ( 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ { ( 0g ‘ 𝑅 ) } ⊆ 𝑚 ) → ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 25 |
23 24
|
sylbi |
⊢ ( ∃ 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) { ( 0g ‘ 𝑅 ) } ⊆ 𝑚 → ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 26 |
22 25
|
syl |
⊢ ( 𝑅 ∈ NzRing → ∃ 𝑚 𝑚 ∈ ( MaxIdeal ‘ 𝑅 ) ) |