Metamath Proof Explorer


Theorem krull

Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024)

Ref Expression
Assertion krull R NzRing m m MaxIdeal R

Proof

Step Hyp Ref Expression
1 nzrring R NzRing R Ring
2 eqid LIdeal R = LIdeal R
3 eqid 0 R = 0 R
4 2 3 lidl0 R Ring 0 R LIdeal R
5 1 4 syl R NzRing 0 R LIdeal R
6 fvex 0 R V
7 hashsng 0 R V 0 R = 1
8 6 7 ax-mp 0 R = 1
9 simpr R NzRing 0 R = Base R 0 R = Base R
10 9 fveq2d R NzRing 0 R = Base R 0 R = Base R
11 8 10 eqtr3id R NzRing 0 R = Base R 1 = Base R
12 1red R NzRing 0 R = Base R 1
13 eqid Base R = Base R
14 13 isnzr2hash R NzRing R Ring 1 < Base R
15 14 simprbi R NzRing 1 < Base R
16 15 adantr R NzRing 0 R = Base R 1 < Base R
17 12 16 ltned R NzRing 0 R = Base R 1 Base R
18 17 neneqd R NzRing 0 R = Base R ¬ 1 = Base R
19 11 18 pm2.65da R NzRing ¬ 0 R = Base R
20 19 neqned R NzRing 0 R Base R
21 13 ssmxidl R Ring 0 R LIdeal R 0 R Base R m MaxIdeal R 0 R m
22 1 5 20 21 syl3anc R NzRing m MaxIdeal R 0 R m
23 df-rex m MaxIdeal R 0 R m m m MaxIdeal R 0 R m
24 exsimpl m m MaxIdeal R 0 R m m m MaxIdeal R
25 23 24 sylbi m MaxIdeal R 0 R m m m MaxIdeal R
26 22 25 syl R NzRing m m MaxIdeal R