Step |
Hyp |
Ref |
Expression |
1 |
|
drngmxidlr.b |
|
2 |
|
drngmxidlr.z |
|
3 |
|
drngmxidlr.u |
|
4 |
|
drngmxidlr.r |
|
5 |
|
drngmxidlr.2 |
|
6 |
|
simpr |
|
7 |
|
simplr |
|
8 |
7 3
|
eleqtrrdi |
|
9 |
5
|
ad4antr |
|
10 |
8 9
|
eleqtrd |
|
11 |
|
elsni |
|
12 |
10 11
|
syl |
|
13 |
6 12
|
sseqtrd |
|
14 |
|
nzrring |
|
15 |
4 14
|
syl |
|
16 |
|
eqid |
|
17 |
16 2
|
lidl0cl |
|
18 |
15 17
|
sylan |
|
19 |
18
|
snssd |
|
20 |
19
|
ad5ant12 |
|
21 |
13 20
|
eqssd |
|
22 |
15
|
ad2antrr |
|
23 |
|
simplr |
|
24 |
|
simpr |
|
25 |
1
|
ssmxidl |
|
26 |
22 23 24 25
|
syl3anc |
|
27 |
21 26
|
r19.29a |
|
28 |
|
simpr |
|
29 |
|
exmidne |
|
30 |
29
|
a1i |
|
31 |
30
|
orcomd |
|
32 |
27 28 31
|
orim12da |
|
33 |
|
vex |
|
34 |
33
|
elpr |
|
35 |
32 34
|
sylibr |
|
36 |
35
|
ex |
|
37 |
36
|
ssrdv |
|
38 |
16 2
|
lidl0 |
|
39 |
15 38
|
syl |
|
40 |
16 1
|
lidl1 |
|
41 |
15 40
|
syl |
|
42 |
39 41
|
prssd |
|
43 |
37 42
|
eqssd |
|
44 |
1 2 16
|
drngidl |
|
45 |
4 44
|
syl |
|
46 |
43 45
|
mpbird |
|