Metamath Proof Explorer


Theorem drngmxidlr

Description: If a ring's only maximal ideal is the zero ideal, it is a division ring. See also drngmxidl . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses drngmxidlr.b B = Base R
drngmxidlr.z 0 ˙ = 0 R
drngmxidlr.u M = MaxIdeal R
drngmxidlr.r φ R NzRing
drngmxidlr.2 φ M = 0 ˙
Assertion drngmxidlr φ R DivRing

Proof

Step Hyp Ref Expression
1 drngmxidlr.b B = Base R
2 drngmxidlr.z 0 ˙ = 0 R
3 drngmxidlr.u M = MaxIdeal R
4 drngmxidlr.r φ R NzRing
5 drngmxidlr.2 φ M = 0 ˙
6 simpr φ i LIdeal R i B m MaxIdeal R i m i m
7 simplr φ i LIdeal R i B m MaxIdeal R i m m MaxIdeal R
8 7 3 eleqtrrdi φ i LIdeal R i B m MaxIdeal R i m m M
9 5 ad4antr φ i LIdeal R i B m MaxIdeal R i m M = 0 ˙
10 8 9 eleqtrd φ i LIdeal R i B m MaxIdeal R i m m 0 ˙
11 elsni m 0 ˙ m = 0 ˙
12 10 11 syl φ i LIdeal R i B m MaxIdeal R i m m = 0 ˙
13 6 12 sseqtrd φ i LIdeal R i B m MaxIdeal R i m i 0 ˙
14 nzrring R NzRing R Ring
15 4 14 syl φ R Ring
16 eqid LIdeal R = LIdeal R
17 16 2 lidl0cl R Ring i LIdeal R 0 ˙ i
18 15 17 sylan φ i LIdeal R 0 ˙ i
19 18 snssd φ i LIdeal R 0 ˙ i
20 19 ad5ant12 φ i LIdeal R i B m MaxIdeal R i m 0 ˙ i
21 13 20 eqssd φ i LIdeal R i B m MaxIdeal R i m i = 0 ˙
22 15 ad2antrr φ i LIdeal R i B R Ring
23 simplr φ i LIdeal R i B i LIdeal R
24 simpr φ i LIdeal R i B i B
25 1 ssmxidl R Ring i LIdeal R i B m MaxIdeal R i m
26 22 23 24 25 syl3anc φ i LIdeal R i B m MaxIdeal R i m
27 21 26 r19.29a φ i LIdeal R i B i = 0 ˙
28 simpr φ i LIdeal R i = B i = B
29 exmidne i = B i B
30 29 a1i φ i LIdeal R i = B i B
31 30 orcomd φ i LIdeal R i B i = B
32 27 28 31 orim12da φ i LIdeal R i = 0 ˙ i = B
33 vex i V
34 33 elpr i 0 ˙ B i = 0 ˙ i = B
35 32 34 sylibr φ i LIdeal R i 0 ˙ B
36 35 ex φ i LIdeal R i 0 ˙ B
37 36 ssrdv φ LIdeal R 0 ˙ B
38 16 2 lidl0 R Ring 0 ˙ LIdeal R
39 15 38 syl φ 0 ˙ LIdeal R
40 16 1 lidl1 R Ring B LIdeal R
41 15 40 syl φ B LIdeal R
42 39 41 prssd φ 0 ˙ B LIdeal R
43 37 42 eqssd φ LIdeal R = 0 ˙ B
44 1 2 16 drngidl R NzRing R DivRing LIdeal R = 0 ˙ B
45 4 44 syl φ R DivRing LIdeal R = 0 ˙ B
46 43 45 mpbird φ R DivRing