Metamath Proof Explorer


Theorem drngmxidl

Description: The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025)

Ref Expression
Hypothesis drngmxidl.1 0 ˙ = 0 R
Assertion drngmxidl R DivRing MaxIdeal R = 0 ˙

Proof

Step Hyp Ref Expression
1 drngmxidl.1 0 ˙ = 0 R
2 drngring R DivRing R Ring
3 eqid Base R = Base R
4 3 mxidlidl R Ring i MaxIdeal R i LIdeal R
5 4 ex R Ring i MaxIdeal R i LIdeal R
6 5 ssrdv R Ring MaxIdeal R LIdeal R
7 2 6 syl R DivRing MaxIdeal R LIdeal R
8 eqid LIdeal R = LIdeal R
9 3 1 8 drngnidl R DivRing LIdeal R = 0 ˙ Base R
10 7 9 sseqtrd R DivRing MaxIdeal R 0 ˙ Base R
11 3 mxidlnr R Ring i MaxIdeal R i Base R
12 2 11 sylan R DivRing i MaxIdeal R i Base R
13 12 nelrdva R DivRing ¬ Base R MaxIdeal R
14 ssdifsn MaxIdeal R 0 ˙ Base R Base R MaxIdeal R 0 ˙ Base R ¬ Base R MaxIdeal R
15 10 13 14 sylanbrc R DivRing MaxIdeal R 0 ˙ Base R Base R
16 drngnzr R DivRing R NzRing
17 1 3 drnglidl1ne0 R NzRing Base R 0 ˙
18 17 necomd R NzRing 0 ˙ Base R
19 difprsn2 0 ˙ Base R 0 ˙ Base R Base R = 0 ˙
20 16 18 19 3syl R DivRing 0 ˙ Base R Base R = 0 ˙
21 15 20 sseqtrd R DivRing MaxIdeal R 0 ˙
22 1 drng0mxidl R DivRing 0 ˙ MaxIdeal R
23 22 snssd R DivRing 0 ˙ MaxIdeal R
24 21 23 eqssd R DivRing MaxIdeal R = 0 ˙