Metamath Proof Explorer


Theorem drng0mxidl

Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025)

Ref Expression
Hypothesis drngmxidl.1 0 ˙ = 0 R
Assertion drng0mxidl R DivRing 0 ˙ MaxIdeal R

Proof

Step Hyp Ref Expression
1 drngmxidl.1 0 ˙ = 0 R
2 drngring R DivRing R Ring
3 eqid LIdeal R = LIdeal R
4 3 1 lidl0 R Ring 0 ˙ LIdeal R
5 2 4 syl R DivRing 0 ˙ LIdeal R
6 eqid Base R = Base R
7 eqid 1 R = 1 R
8 6 7 ringidcl R Ring 1 R Base R
9 2 8 syl R DivRing 1 R Base R
10 drngnzr R DivRing R NzRing
11 7 1 nzrnz R NzRing 1 R 0 ˙
12 nelsn 1 R 0 ˙ ¬ 1 R 0 ˙
13 10 11 12 3syl R DivRing ¬ 1 R 0 ˙
14 nelne1 1 R Base R ¬ 1 R 0 ˙ Base R 0 ˙
15 9 13 14 syl2anc R DivRing Base R 0 ˙
16 15 necomd R DivRing 0 ˙ Base R
17 6 1 3 drngnidl R DivRing LIdeal R = 0 ˙ Base R
18 17 eleq2d R DivRing j LIdeal R j 0 ˙ Base R
19 18 biimpa R DivRing j LIdeal R j 0 ˙ Base R
20 elpri j 0 ˙ Base R j = 0 ˙ j = Base R
21 19 20 syl R DivRing j LIdeal R j = 0 ˙ j = Base R
22 21 a1d R DivRing j LIdeal R 0 ˙ j j = 0 ˙ j = Base R
23 22 ralrimiva R DivRing j LIdeal R 0 ˙ j j = 0 ˙ j = Base R
24 6 ismxidl R Ring 0 ˙ MaxIdeal R 0 ˙ LIdeal R 0 ˙ Base R j LIdeal R 0 ˙ j j = 0 ˙ j = Base R
25 24 biimpar R Ring 0 ˙ LIdeal R 0 ˙ Base R j LIdeal R 0 ˙ j j = 0 ˙ j = Base R 0 ˙ MaxIdeal R
26 2 5 16 23 25 syl13anc R DivRing 0 ˙ MaxIdeal R