Step |
Hyp |
Ref |
Expression |
1 |
|
drngmxidl.1 |
|- .0. = ( 0g ` R ) |
2 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
3 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
4 |
3 1
|
lidl0 |
|- ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) |
5 |
2 4
|
syl |
|- ( R e. DivRing -> { .0. } e. ( LIdeal ` R ) ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
6 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
9 |
2 8
|
syl |
|- ( R e. DivRing -> ( 1r ` R ) e. ( Base ` R ) ) |
10 |
|
drngnzr |
|- ( R e. DivRing -> R e. NzRing ) |
11 |
7 1
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
12 |
|
nelsn |
|- ( ( 1r ` R ) =/= .0. -> -. ( 1r ` R ) e. { .0. } ) |
13 |
10 11 12
|
3syl |
|- ( R e. DivRing -> -. ( 1r ` R ) e. { .0. } ) |
14 |
|
nelne1 |
|- ( ( ( 1r ` R ) e. ( Base ` R ) /\ -. ( 1r ` R ) e. { .0. } ) -> ( Base ` R ) =/= { .0. } ) |
15 |
9 13 14
|
syl2anc |
|- ( R e. DivRing -> ( Base ` R ) =/= { .0. } ) |
16 |
15
|
necomd |
|- ( R e. DivRing -> { .0. } =/= ( Base ` R ) ) |
17 |
6 1 3
|
drngnidl |
|- ( R e. DivRing -> ( LIdeal ` R ) = { { .0. } , ( Base ` R ) } ) |
18 |
17
|
eleq2d |
|- ( R e. DivRing -> ( j e. ( LIdeal ` R ) <-> j e. { { .0. } , ( Base ` R ) } ) ) |
19 |
18
|
biimpa |
|- ( ( R e. DivRing /\ j e. ( LIdeal ` R ) ) -> j e. { { .0. } , ( Base ` R ) } ) |
20 |
|
elpri |
|- ( j e. { { .0. } , ( Base ` R ) } -> ( j = { .0. } \/ j = ( Base ` R ) ) ) |
21 |
19 20
|
syl |
|- ( ( R e. DivRing /\ j e. ( LIdeal ` R ) ) -> ( j = { .0. } \/ j = ( Base ` R ) ) ) |
22 |
21
|
a1d |
|- ( ( R e. DivRing /\ j e. ( LIdeal ` R ) ) -> ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) |
23 |
22
|
ralrimiva |
|- ( R e. DivRing -> A. j e. ( LIdeal ` R ) ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) |
24 |
6
|
ismxidl |
|- ( R e. Ring -> ( { .0. } e. ( MaxIdeal ` R ) <-> ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) ) ) |
25 |
24
|
biimpar |
|- ( ( R e. Ring /\ ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( { .0. } C_ j -> ( j = { .0. } \/ j = ( Base ` R ) ) ) ) ) -> { .0. } e. ( MaxIdeal ` R ) ) |
26 |
2 5 16 23 25
|
syl13anc |
|- ( R e. DivRing -> { .0. } e. ( MaxIdeal ` R ) ) |