| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngmxidl.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 2 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 3 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 4 |
3 1
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝑅 ∈ DivRing → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 8 |
6 7
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 9 |
2 8
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 10 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
| 11 |
7 1
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 12 |
|
nelsn |
⊢ ( ( 1r ‘ 𝑅 ) ≠ 0 → ¬ ( 1r ‘ 𝑅 ) ∈ { 0 } ) |
| 13 |
10 11 12
|
3syl |
⊢ ( 𝑅 ∈ DivRing → ¬ ( 1r ‘ 𝑅 ) ∈ { 0 } ) |
| 14 |
|
nelne1 |
⊢ ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ¬ ( 1r ‘ 𝑅 ) ∈ { 0 } ) → ( Base ‘ 𝑅 ) ≠ { 0 } ) |
| 15 |
9 13 14
|
syl2anc |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ≠ { 0 } ) |
| 16 |
15
|
necomd |
⊢ ( 𝑅 ∈ DivRing → { 0 } ≠ ( Base ‘ 𝑅 ) ) |
| 17 |
6 1 3
|
drngnidl |
⊢ ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) = { { 0 } , ( Base ‘ 𝑅 ) } ) |
| 18 |
17
|
eleq2d |
⊢ ( 𝑅 ∈ DivRing → ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↔ 𝑗 ∈ { { 0 } , ( Base ‘ 𝑅 ) } ) ) |
| 19 |
18
|
biimpa |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑗 ∈ { { 0 } , ( Base ‘ 𝑅 ) } ) |
| 20 |
|
elpri |
⊢ ( 𝑗 ∈ { { 0 } , ( Base ‘ 𝑅 ) } → ( 𝑗 = { 0 } ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑗 = { 0 } ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) |
| 22 |
21
|
a1d |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( { 0 } ⊆ 𝑗 → ( 𝑗 = { 0 } ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) |
| 23 |
22
|
ralrimiva |
⊢ ( 𝑅 ∈ DivRing → ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( { 0 } ⊆ 𝑗 → ( 𝑗 = { 0 } ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) |
| 24 |
6
|
ismxidl |
⊢ ( 𝑅 ∈ Ring → ( { 0 } ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( { 0 } ∈ ( LIdeal ‘ 𝑅 ) ∧ { 0 } ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( { 0 } ⊆ 𝑗 → ( 𝑗 = { 0 } ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
| 25 |
24
|
biimpar |
⊢ ( ( 𝑅 ∈ Ring ∧ ( { 0 } ∈ ( LIdeal ‘ 𝑅 ) ∧ { 0 } ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( { 0 } ⊆ 𝑗 → ( 𝑗 = { 0 } ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) → { 0 } ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 26 |
2 5 16 23 25
|
syl13anc |
⊢ ( 𝑅 ∈ DivRing → { 0 } ∈ ( MaxIdeal ‘ 𝑅 ) ) |