| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngmxidl.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 2 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 4 |
3
|
mxidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 5 |
4
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑖 ∈ ( MaxIdeal ‘ 𝑅 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ) |
| 6 |
5
|
ssrdv |
⊢ ( 𝑅 ∈ Ring → ( MaxIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( MaxIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 9 |
3 1 8
|
drngnidl |
⊢ ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) = { { 0 } , ( Base ‘ 𝑅 ) } ) |
| 10 |
7 9
|
sseqtrd |
⊢ ( 𝑅 ∈ DivRing → ( MaxIdeal ‘ 𝑅 ) ⊆ { { 0 } , ( Base ‘ 𝑅 ) } ) |
| 11 |
3
|
mxidlnr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑖 ≠ ( Base ‘ 𝑅 ) ) |
| 12 |
2 11
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑖 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑖 ≠ ( Base ‘ 𝑅 ) ) |
| 13 |
12
|
nelrdva |
⊢ ( 𝑅 ∈ DivRing → ¬ ( Base ‘ 𝑅 ) ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 14 |
|
ssdifsn |
⊢ ( ( MaxIdeal ‘ 𝑅 ) ⊆ ( { { 0 } , ( Base ‘ 𝑅 ) } ∖ { ( Base ‘ 𝑅 ) } ) ↔ ( ( MaxIdeal ‘ 𝑅 ) ⊆ { { 0 } , ( Base ‘ 𝑅 ) } ∧ ¬ ( Base ‘ 𝑅 ) ∈ ( MaxIdeal ‘ 𝑅 ) ) ) |
| 15 |
10 13 14
|
sylanbrc |
⊢ ( 𝑅 ∈ DivRing → ( MaxIdeal ‘ 𝑅 ) ⊆ ( { { 0 } , ( Base ‘ 𝑅 ) } ∖ { ( Base ‘ 𝑅 ) } ) ) |
| 16 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
| 17 |
1 3
|
drnglidl1ne0 |
⊢ ( 𝑅 ∈ NzRing → ( Base ‘ 𝑅 ) ≠ { 0 } ) |
| 18 |
17
|
necomd |
⊢ ( 𝑅 ∈ NzRing → { 0 } ≠ ( Base ‘ 𝑅 ) ) |
| 19 |
|
difprsn2 |
⊢ ( { 0 } ≠ ( Base ‘ 𝑅 ) → ( { { 0 } , ( Base ‘ 𝑅 ) } ∖ { ( Base ‘ 𝑅 ) } ) = { { 0 } } ) |
| 20 |
16 18 19
|
3syl |
⊢ ( 𝑅 ∈ DivRing → ( { { 0 } , ( Base ‘ 𝑅 ) } ∖ { ( Base ‘ 𝑅 ) } ) = { { 0 } } ) |
| 21 |
15 20
|
sseqtrd |
⊢ ( 𝑅 ∈ DivRing → ( MaxIdeal ‘ 𝑅 ) ⊆ { { 0 } } ) |
| 22 |
1
|
drng0mxidl |
⊢ ( 𝑅 ∈ DivRing → { 0 } ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 23 |
22
|
snssd |
⊢ ( 𝑅 ∈ DivRing → { { 0 } } ⊆ ( MaxIdeal ‘ 𝑅 ) ) |
| 24 |
21 23
|
eqssd |
⊢ ( 𝑅 ∈ DivRing → ( MaxIdeal ‘ 𝑅 ) = { { 0 } } ) |