| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprabs.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
|
opprabs.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
opprabs.1 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 4 |
|
opprabs.2 |
⊢ ( 𝜑 → Fun 𝑅 ) |
| 5 |
|
opprabs.3 |
⊢ ( 𝜑 → ( .r ‘ ndx ) ∈ dom 𝑅 ) |
| 6 |
|
opprabs.4 |
⊢ ( 𝜑 → · Fn ( 𝐵 × 𝐵 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
| 9 |
7 2 1 8
|
opprmulfval |
⊢ ( .r ‘ 𝑂 ) = tpos · |
| 10 |
9
|
tposeqi |
⊢ tpos ( .r ‘ 𝑂 ) = tpos tpos · |
| 11 |
|
fnrel |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → Rel · ) |
| 12 |
|
relxp |
⊢ Rel ( 𝐵 × 𝐵 ) |
| 13 |
|
fndm |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → dom · = ( 𝐵 × 𝐵 ) ) |
| 14 |
13
|
releqd |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → ( Rel dom · ↔ Rel ( 𝐵 × 𝐵 ) ) ) |
| 15 |
12 14
|
mpbiri |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → Rel dom · ) |
| 16 |
|
tpostpos2 |
⊢ ( ( Rel · ∧ Rel dom · ) → tpos tpos · = · ) |
| 17 |
11 15 16
|
syl2anc |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → tpos tpos · = · ) |
| 18 |
10 17
|
eqtrid |
⊢ ( · Fn ( 𝐵 × 𝐵 ) → tpos ( .r ‘ 𝑂 ) = · ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → tpos ( .r ‘ 𝑂 ) = · ) |
| 20 |
19 2
|
eqtrdi |
⊢ ( 𝜑 → tpos ( .r ‘ 𝑂 ) = ( .r ‘ 𝑅 ) ) |
| 21 |
20
|
opeq2d |
⊢ ( 𝜑 → 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 = 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
| 23 |
1 7
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 24 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
| 25 |
23 8 24
|
opprval |
⊢ ( oppr ‘ 𝑂 ) = ( 𝑂 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) |
| 26 |
7 2 1
|
opprval |
⊢ 𝑂 = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) |
| 27 |
26
|
oveq1i |
⊢ ( 𝑂 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) |
| 28 |
25 27
|
eqtri |
⊢ ( oppr ‘ 𝑂 ) = ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) |
| 29 |
|
fvex |
⊢ ( .r ‘ 𝑂 ) ∈ V |
| 30 |
29
|
tposex |
⊢ tpos ( .r ‘ 𝑂 ) ∈ V |
| 31 |
|
setsabs |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ tpos ( .r ‘ 𝑂 ) ∈ V ) → ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
| 32 |
30 31
|
mpan2 |
⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos · 〉 ) sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
| 33 |
28 32
|
eqtrid |
⊢ ( 𝑅 ∈ 𝑉 → ( oppr ‘ 𝑂 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
| 34 |
3 33
|
syl |
⊢ ( 𝜑 → ( oppr ‘ 𝑂 ) = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑂 ) 〉 ) ) |
| 35 |
|
mulridx |
⊢ .r = Slot ( .r ‘ ndx ) |
| 36 |
35 3 4 5
|
setsidvald |
⊢ ( 𝜑 → 𝑅 = ( 𝑅 sSet 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
| 37 |
22 34 36
|
3eqtr4rd |
⊢ ( 𝜑 → 𝑅 = ( oppr ‘ 𝑂 ) ) |