Description: Value of the structure replacement function, deduction version.
Hint: Do not substitute N by a specific (positive) integer to be independent of a hard-coded index value. Often, ( Endx ) can be used instead of N . (Contributed by AV, 14-Mar-2020) (Revised by AV, 17-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setsidvald.e | ⊢ 𝐸 = Slot 𝑁 | |
setsidvald.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
setsidvald.f | ⊢ ( 𝜑 → Fun 𝑆 ) | ||
setsidvald.d | ⊢ ( 𝜑 → 𝑁 ∈ dom 𝑆 ) | ||
Assertion | setsidvald | ⊢ ( 𝜑 → 𝑆 = ( 𝑆 sSet 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvald.e | ⊢ 𝐸 = Slot 𝑁 | |
2 | setsidvald.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
3 | setsidvald.f | ⊢ ( 𝜑 → Fun 𝑆 ) | |
4 | setsidvald.d | ⊢ ( 𝜑 → 𝑁 ∈ dom 𝑆 ) | |
5 | fvex | ⊢ ( 𝐸 ‘ 𝑆 ) ∈ V | |
6 | setsval | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐸 ‘ 𝑆 ) ∈ V ) → ( 𝑆 sSet 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 ) = ( ( 𝑆 ↾ ( V ∖ { 𝑁 } ) ) ∪ { 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 } ) ) | |
7 | 2 5 6 | sylancl | ⊢ ( 𝜑 → ( 𝑆 sSet 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 ) = ( ( 𝑆 ↾ ( V ∖ { 𝑁 } ) ) ∪ { 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 } ) ) |
8 | 1 2 | strfvnd | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ 𝑁 ) ) |
9 | 8 | opeq2d | ⊢ ( 𝜑 → 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 = 〈 𝑁 , ( 𝑆 ‘ 𝑁 ) 〉 ) |
10 | 9 | sneqd | ⊢ ( 𝜑 → { 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 } = { 〈 𝑁 , ( 𝑆 ‘ 𝑁 ) 〉 } ) |
11 | 10 | uneq2d | ⊢ ( 𝜑 → ( ( 𝑆 ↾ ( V ∖ { 𝑁 } ) ) ∪ { 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 } ) = ( ( 𝑆 ↾ ( V ∖ { 𝑁 } ) ) ∪ { 〈 𝑁 , ( 𝑆 ‘ 𝑁 ) 〉 } ) ) |
12 | funresdfunsn | ⊢ ( ( Fun 𝑆 ∧ 𝑁 ∈ dom 𝑆 ) → ( ( 𝑆 ↾ ( V ∖ { 𝑁 } ) ) ∪ { 〈 𝑁 , ( 𝑆 ‘ 𝑁 ) 〉 } ) = 𝑆 ) | |
13 | 3 4 12 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 ↾ ( V ∖ { 𝑁 } ) ) ∪ { 〈 𝑁 , ( 𝑆 ‘ 𝑁 ) 〉 } ) = 𝑆 ) |
14 | 7 11 13 | 3eqtrrd | ⊢ ( 𝜑 → 𝑆 = ( 𝑆 sSet 〈 𝑁 , ( 𝐸 ‘ 𝑆 ) 〉 ) ) |