Metamath Proof Explorer


Theorem setsidvald

Description: Value of the structure replacement function, deduction version.

Hint: Do not substitute N by a specific (positive) integer to be independent of a hard-coded index value. Often, ( Endx ) can be used instead of N . (Contributed by AV, 14-Mar-2020) (Revised by AV, 17-Oct-2024)

Ref Expression
Hypotheses setsidvald.e
|- E = Slot N
setsidvald.s
|- ( ph -> S e. V )
setsidvald.f
|- ( ph -> Fun S )
setsidvald.d
|- ( ph -> N e. dom S )
Assertion setsidvald
|- ( ph -> S = ( S sSet <. N , ( E ` S ) >. ) )

Proof

Step Hyp Ref Expression
1 setsidvald.e
 |-  E = Slot N
2 setsidvald.s
 |-  ( ph -> S e. V )
3 setsidvald.f
 |-  ( ph -> Fun S )
4 setsidvald.d
 |-  ( ph -> N e. dom S )
5 fvex
 |-  ( E ` S ) e. _V
6 setsval
 |-  ( ( S e. V /\ ( E ` S ) e. _V ) -> ( S sSet <. N , ( E ` S ) >. ) = ( ( S |` ( _V \ { N } ) ) u. { <. N , ( E ` S ) >. } ) )
7 2 5 6 sylancl
 |-  ( ph -> ( S sSet <. N , ( E ` S ) >. ) = ( ( S |` ( _V \ { N } ) ) u. { <. N , ( E ` S ) >. } ) )
8 1 2 strfvnd
 |-  ( ph -> ( E ` S ) = ( S ` N ) )
9 8 opeq2d
 |-  ( ph -> <. N , ( E ` S ) >. = <. N , ( S ` N ) >. )
10 9 sneqd
 |-  ( ph -> { <. N , ( E ` S ) >. } = { <. N , ( S ` N ) >. } )
11 10 uneq2d
 |-  ( ph -> ( ( S |` ( _V \ { N } ) ) u. { <. N , ( E ` S ) >. } ) = ( ( S |` ( _V \ { N } ) ) u. { <. N , ( S ` N ) >. } ) )
12 funresdfunsn
 |-  ( ( Fun S /\ N e. dom S ) -> ( ( S |` ( _V \ { N } ) ) u. { <. N , ( S ` N ) >. } ) = S )
13 3 4 12 syl2anc
 |-  ( ph -> ( ( S |` ( _V \ { N } ) ) u. { <. N , ( S ` N ) >. } ) = S )
14 7 11 13 3eqtrrd
 |-  ( ph -> S = ( S sSet <. N , ( E ` S ) >. ) )