Metamath Proof Explorer


Theorem setsidvald

Description: Value of the structure replacement function, deduction version.

Hint: Do not substitute N by a specific (positive) integer to be independent of a hard-coded index value. Often, ( Endx ) can be used instead of N . (Contributed by AV, 14-Mar-2020) (Revised by AV, 17-Oct-2024)

Ref Expression
Hypotheses setsidvald.e E = Slot N
setsidvald.s φ S V
setsidvald.f φ Fun S
setsidvald.d φ N dom S
Assertion setsidvald φ S = S sSet N E S

Proof

Step Hyp Ref Expression
1 setsidvald.e E = Slot N
2 setsidvald.s φ S V
3 setsidvald.f φ Fun S
4 setsidvald.d φ N dom S
5 fvex E S V
6 setsval S V E S V S sSet N E S = S V N N E S
7 2 5 6 sylancl φ S sSet N E S = S V N N E S
8 1 2 strfvnd φ E S = S N
9 8 opeq2d φ N E S = N S N
10 9 sneqd φ N E S = N S N
11 10 uneq2d φ S V N N E S = S V N N S N
12 funresdfunsn Fun S N dom S S V N N S N = S
13 3 4 12 syl2anc φ S V N N S N = S
14 7 11 13 3eqtrrd φ S = S sSet N E S