Metamath Proof Explorer


Theorem setsidvaldOLD

Description: Obsolete version of setsidvald as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses setsidvaldOLD.e
|- E = Slot N
setsidvaldOLD.n
|- N e. NN
setsidvaldOLD.s
|- ( ph -> S e. V )
setsidvaldOLD.f
|- ( ph -> Fun S )
setsidvaldOLD.d
|- ( ph -> ( E ` ndx ) e. dom S )
Assertion setsidvaldOLD
|- ( ph -> S = ( S sSet <. ( E ` ndx ) , ( E ` S ) >. ) )

Proof

Step Hyp Ref Expression
1 setsidvaldOLD.e
 |-  E = Slot N
2 setsidvaldOLD.n
 |-  N e. NN
3 setsidvaldOLD.s
 |-  ( ph -> S e. V )
4 setsidvaldOLD.f
 |-  ( ph -> Fun S )
5 setsidvaldOLD.d
 |-  ( ph -> ( E ` ndx ) e. dom S )
6 fvex
 |-  ( E ` S ) e. _V
7 setsval
 |-  ( ( S e. V /\ ( E ` S ) e. _V ) -> ( S sSet <. ( E ` ndx ) , ( E ` S ) >. ) = ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( E ` S ) >. } ) )
8 3 6 7 sylancl
 |-  ( ph -> ( S sSet <. ( E ` ndx ) , ( E ` S ) >. ) = ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( E ` S ) >. } ) )
9 1 2 ndxid
 |-  E = Slot ( E ` ndx )
10 9 3 strfvnd
 |-  ( ph -> ( E ` S ) = ( S ` ( E ` ndx ) ) )
11 10 opeq2d
 |-  ( ph -> <. ( E ` ndx ) , ( E ` S ) >. = <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. )
12 11 sneqd
 |-  ( ph -> { <. ( E ` ndx ) , ( E ` S ) >. } = { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } )
13 12 uneq2d
 |-  ( ph -> ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( E ` S ) >. } ) = ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } ) )
14 funresdfunsn
 |-  ( ( Fun S /\ ( E ` ndx ) e. dom S ) -> ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } ) = S )
15 4 5 14 syl2anc
 |-  ( ph -> ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } ) = S )
16 8 13 15 3eqtrrd
 |-  ( ph -> S = ( S sSet <. ( E ` ndx ) , ( E ` S ) >. ) )