| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprabs.o |
|- O = ( oppR ` R ) |
| 2 |
|
opprabs.m |
|- .x. = ( .r ` R ) |
| 3 |
|
opprabs.1 |
|- ( ph -> R e. V ) |
| 4 |
|
opprabs.2 |
|- ( ph -> Fun R ) |
| 5 |
|
opprabs.3 |
|- ( ph -> ( .r ` ndx ) e. dom R ) |
| 6 |
|
opprabs.4 |
|- ( ph -> .x. Fn ( B X. B ) ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
| 9 |
7 2 1 8
|
opprmulfval |
|- ( .r ` O ) = tpos .x. |
| 10 |
9
|
tposeqi |
|- tpos ( .r ` O ) = tpos tpos .x. |
| 11 |
|
fnrel |
|- ( .x. Fn ( B X. B ) -> Rel .x. ) |
| 12 |
|
relxp |
|- Rel ( B X. B ) |
| 13 |
|
fndm |
|- ( .x. Fn ( B X. B ) -> dom .x. = ( B X. B ) ) |
| 14 |
13
|
releqd |
|- ( .x. Fn ( B X. B ) -> ( Rel dom .x. <-> Rel ( B X. B ) ) ) |
| 15 |
12 14
|
mpbiri |
|- ( .x. Fn ( B X. B ) -> Rel dom .x. ) |
| 16 |
|
tpostpos2 |
|- ( ( Rel .x. /\ Rel dom .x. ) -> tpos tpos .x. = .x. ) |
| 17 |
11 15 16
|
syl2anc |
|- ( .x. Fn ( B X. B ) -> tpos tpos .x. = .x. ) |
| 18 |
10 17
|
eqtrid |
|- ( .x. Fn ( B X. B ) -> tpos ( .r ` O ) = .x. ) |
| 19 |
6 18
|
syl |
|- ( ph -> tpos ( .r ` O ) = .x. ) |
| 20 |
19 2
|
eqtrdi |
|- ( ph -> tpos ( .r ` O ) = ( .r ` R ) ) |
| 21 |
20
|
opeq2d |
|- ( ph -> <. ( .r ` ndx ) , tpos ( .r ` O ) >. = <. ( .r ` ndx ) , ( .r ` R ) >. ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( R sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) = ( R sSet <. ( .r ` ndx ) , ( .r ` R ) >. ) ) |
| 23 |
1 7
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 24 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
| 25 |
23 8 24
|
opprval |
|- ( oppR ` O ) = ( O sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) |
| 26 |
7 2 1
|
opprval |
|- O = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) |
| 27 |
26
|
oveq1i |
|- ( O sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) = ( ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) |
| 28 |
25 27
|
eqtri |
|- ( oppR ` O ) = ( ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) |
| 29 |
|
fvex |
|- ( .r ` O ) e. _V |
| 30 |
29
|
tposex |
|- tpos ( .r ` O ) e. _V |
| 31 |
|
setsabs |
|- ( ( R e. V /\ tpos ( .r ` O ) e. _V ) -> ( ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) ) |
| 32 |
30 31
|
mpan2 |
|- ( R e. V -> ( ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) ) |
| 33 |
28 32
|
eqtrid |
|- ( R e. V -> ( oppR ` O ) = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) ) |
| 34 |
3 33
|
syl |
|- ( ph -> ( oppR ` O ) = ( R sSet <. ( .r ` ndx ) , tpos ( .r ` O ) >. ) ) |
| 35 |
|
mulridx |
|- .r = Slot ( .r ` ndx ) |
| 36 |
35 3 4 5
|
setsidvald |
|- ( ph -> R = ( R sSet <. ( .r ` ndx ) , ( .r ` R ) >. ) ) |
| 37 |
22 34 36
|
3eqtr4rd |
|- ( ph -> R = ( oppR ` O ) ) |