| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setsres |
|- ( S e. V -> ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) = ( S |` ( _V \ { A } ) ) ) |
| 2 |
1
|
adantr |
|- ( ( S e. V /\ C e. W ) -> ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) = ( S |` ( _V \ { A } ) ) ) |
| 3 |
2
|
uneq1d |
|- ( ( S e. V /\ C e. W ) -> ( ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
| 4 |
|
ovexd |
|- ( S e. V -> ( S sSet <. A , B >. ) e. _V ) |
| 5 |
|
setsval |
|- ( ( ( S sSet <. A , B >. ) e. _V /\ C e. W ) -> ( ( S sSet <. A , B >. ) sSet <. A , C >. ) = ( ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
| 6 |
4 5
|
sylan |
|- ( ( S e. V /\ C e. W ) -> ( ( S sSet <. A , B >. ) sSet <. A , C >. ) = ( ( ( S sSet <. A , B >. ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
| 7 |
|
setsval |
|- ( ( S e. V /\ C e. W ) -> ( S sSet <. A , C >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
| 8 |
3 6 7
|
3eqtr4d |
|- ( ( S e. V /\ C e. W ) -> ( ( S sSet <. A , B >. ) sSet <. A , C >. ) = ( S sSet <. A , C >. ) ) |